哺乳动物/mTOR是丝氨酸 - 硫代激酶。它控制了哺乳动物细胞的许多重要功能,例如细胞存活和蛋白质合成[4]。在2000年代初期,神经科学家开始对MTOR目标的兴趣。4E结合蛋白和P70核糖体S6蛋白激酶1最初研究[5]。在确定MTOR在神经元形态发生,生存和分化中的作用后不久,靶标开始流行,许多科学家在PD和Alzheimer病(AD)等不同疾病中观察到了其在不同疾病中的作用。与MTOR相关的生理状况和神经病理列表迅速增加,但是对MTOR调节及其神经元中其细胞效应子的透彻了解仍然难以捉摸。自噬,翻译,细胞信号传导,转录和细胞骨架动力学都受MTOR活性变化的影响[6]。根据新的研究,MTOR的过表达与PD的发病机理有关[7,8]。结果,mTOR可能是PD的可能治疗靶标之一[9]。MTOR活动很有争议。它具有
厌氧甲烷营养 (ANME) 古菌从甲烷分解中获取能量,但人们对它们的染色体外遗传元素了解甚少。本文我们描述了与 Methanoperedens 属的 ANME 古菌相关的大质粒,这些质粒在富集培养物和其他天然缺氧环境中存在。通过人工筛选,我们发现其中两个质粒很大(155,605 bp 和 191,912 bp),呈环状,并且可以双向复制。质粒的拷贝数与主染色体相同,并且质粒基因被积极转录。其中一个质粒编码三种 tRNA,即核糖体蛋白 uL16 和延伸因子 eEF2;这些基因似乎在宿主 Methanoperedens 基因组中缺失,表明质粒和宿主之间存在强制性的相互依赖性。我们的工作为开发遗传载体开辟了道路,以阐明 Methanoperedens 的生理学和生物化学,并可能对其进行基因编辑以增强生长并加速甲烷氧化速率。
远端基因座之间的相互作用,包括涉及增强子和启动子的相互作用,是哺乳动物基因调节的核心机制,但这些相互作用的蛋白质调节剂仍未确定。锌指转录因子Znf143/ZFP143被强烈牵涉到染色质相互作用的调节剂,在有或没有CTCF的情况下起作用。然而,Znf143/ZFP143在此过程中的作用及其功能,无论有或没有CTCF,都尚不清楚。在这里,我们使用双用途Degron/Imaging标签标记了CTCF和ZNF143/ZFP143,以组合其循环功能和彼此的效果。我们发现ZNF143/ZFP143在小鼠和人类细胞中没有一般循环功能,并且它在很大程度上独立于CTCF起作用。相反,ZNF143/ZFP143是具有极为稳定的染色质停留时间(> 20分钟)的必不可少且高度保守的转录因子,可调节线粒体和核糖体基因的重要子集。
核酸有两种形式:脱氧核糖核酸 (DNA) 和核糖核酸 (RNA)。RNA 的结构多种多样,可分为信使 RNA(mRNA,编码蛋白质)、非编码 RNA、转移 RNA (tRNA)、核糖体 RNA (rRNA) 和长链非编码 RNA (lncRNA) – DNA 是一种更稳定的分子 [1]。DNA 中的遗传信息编码为 RNA,即转录,然后翻译成蛋白质。由于蛋白质的作用机制和化学特性,大多数现有药物(如小分子和抗体)主要针对蛋白质。近年来,可结合信使 RNA (mRNA) 的化合物的使用引起了越来越多的兴趣,因为抑制蛋白质表达有助于控制炎症和肿瘤疾病的病程。该领域的两种主要治疗方法是抑制 mRNA 翻译的反义寡核苷酸 (ASO) 和通过 RNA 干扰 (RNAi) 途径发挥作用的寡核苷酸 [2]。
本研究首次采用引物步移序列法测定了Lepidocephalichthys berdmorei的线粒体全基因组。该基因组全长16,574 bp,包括13个蛋白质编码基因(PCG),22个转移RNA(tRNA)基因,2个核糖体RNA(rRNA)基因和一个控制区(D-loop)。基因排列模式与其他硬骨鱼类相同。整体碱基组成为29.9%A,28.5%T,25.5%C和16.1%G,A+T偏向为58.4%。进一步,基于18种鲂科鱼线粒体基因组中的13个PCG,采用3种不同的方法(邻接法、最大似然法和贝叶斯推断)进行系统发育分析。所有方法一致表明鳞头鱼属的四个物种形成一个单系群。本研究将为鳞头鱼物种提供有效的分子信息,并为物种鉴定研究提供新的遗传标记。
移动遗传因素(MGE)的交换促进了功能性状的传播,包括细菌群落内的抗菌抗性。目前缺乏在复杂的微生物群落中绘制MGE和识别其细菌宿主的工具,从而限制了我们对这一过程的理解。在这里,我们将单分子DNA荧光原位杂交(FISH)与多重核糖体RNA-fish相结合,以同时可视化MGE和细菌分类单元。我们在空间映射的噬菌体和抗菌耐药性(AMR)质粒中鉴定了其在人口腔生物膜中的宿主分类群。这揭示了AMR质粒和预言的独特簇,与宿主细菌的密集区域一致。我们的数据表明,细菌分类群中的空间异质性导致社区内部的MGE分布,MGE簇是由水平基因转移热点或MGE携带菌株的扩展产生的。我们的方法可以帮助推进生物膜中AMR和噬菌体生态的研究。
细胞利用核糖体化学,通过翻译遗传密码组装 α-氨基酸构件,生成序列定义的蛋白质。目前,人们对操纵这种化学反应以从非 L-α-氨基酸生产序列定义的化学聚合物非常感兴趣,从而实现新的骨架和聚合化学。虽然大肠杆菌核糖体在体外耐受某些非 L-α-氨基酸,但关于结构见解和有效形成键所需的边界条件的知识很少。美国国家科学基金会遗传编码材料中心 (CHE-2002182) 的 Zoe Watson 博士及其同事使用基于元动力学的计算方法来了解非 L-α-氨基酸如何适应核糖体活性位点。他们发现,反应性单体倾向于构象空间,其特征是 A 位亲核试剂与 P 位羰基之间的距离小于 4 Å,Bürgi-Dunitz 角为 90-110° (doi: 10.1038/s41557- 023-01226-w)。这些发现以及相关的计算工作流程应能加速单体设计和相关转化化学,以促进序列定义的非肽异寡聚体的核糖体合成。
结构化的RNA位于许多中心生物学过程的核心,从基因表达到催化。RNA结构预测由于缺乏与有机体表型相关的高质量参考数据而无法为RNA功能提供的,因此无法进行预测。我们提出了石榴石(GTDB获得了带有环境温度的RNA),这是一个固定在基因组分类数据库(GTDB)的RNA结构和功能分析的新数据库。石榴石将RNA序列与GTDB参考生物的实验和预测的最佳生长温度联系起来。使用石榴石,我们开发了序列和结构感知的RNA生成模型,重叠的三重态Tokeni-Zation为GPT样模型提供了最佳的编码。在石榴石和这些RNA生成模型中利用高嗜热RNA,我们确定了核糖体RNA中的突变,这些突变赋予了赋予大肠杆菌核糖体的热稳定性。此处介绍的GTDB衍生的数据和深度学习模型为理解RNA序列,结构和功能之间的连接提供了基础。
替加环素是第一代甘氨酰环素,自2005年开始使用,是治疗严重感染的最后选择之一,尤其是治疗由广泛耐药的肠杆菌科细菌引起的感染(Sun等,2019)。首次使用后不久,一家医院分离出一株多重耐药(MDR)肺炎克雷伯菌菌株(替加环素敏感性降低,MIC = 4μg/ml),大大降低了替加环素的疗效(Ruzin等,2005)。迄今为止,已有多种已知机制与肺炎克雷伯菌对替加环素的耐药性相关,包括耐药-结瘤-细胞分裂 (RND) 型外排泵(如 AcrAB-TolC 和 OqxAB)的表达增强、核糖体 S10 蛋白(由 rpsJ 和 lon 基因编码;Ruzin 等,2005;Villa 等,2014;He 等,2015;Fang 等,2016)的突变、质粒介导的 tmexCD1-toprJ1 外排泵的获得(Lv 等,2020)、tet (A) 基因突变(Du 等,2018)。
抗生素耐药性 作用方式 靶点 常见用途 (mm) 氨苄西林 <21 结合青霉素-细胞壁 (PBPs),抑制肽聚糖的最终转肽状态(大肠杆菌、奇异变形杆菌、肺炎链球菌、金黄色葡萄球菌) 杆菌肽B-10 <9 结合脂质载体分子(紫杉醇 A / B-10) 细胞壁窄谱(革兰氏+肽聚糖生物体:构建块、葡萄球菌、链球菌) 氯霉素 <13 结合核糖体亚基 50S 蛋白,防止氨基酸转移到脑膜炎球菌,生长多肽H. influenzae) 链 Novobiocin <17 与酶 DNA 窄谱 (NB) DNA 旋转酶结合,复制 (主要用于防止抗革兰氏阳性菌 S. aureus 复制过程中 DNA 解开) 有关抗生素列表,请参阅单元 5 末尾的完整表 15.1
