重组腺相关病毒(RAAV)是通常用于基因治疗的病毒载体。残留的宿主细胞DNA是一种与感染和致癌性风险有关的杂质。因此,需要对其进行监控以进行质量控制。我们旨在开发针对18S核糖体RNA(RRNA)基因的液滴数字聚合酶链反应(DDPCR)方法,以定量残留宿主细胞DNA。使用两组共享C-末端的启动对确定18S rRNA基因的拷贝数。对于将18S rRNA基因的拷贝数转化为基因组DNA的质量浓度,HEK293基因组DNA中18S rRNA基因的准确拷贝数通过与三个参考基因的拷贝数(EIF5B,DCK和HBB的拷贝数进行比较)确定。结果表明,回收了88.6–97.9.9%的HEK293基因组DNA,被回收到RAAV制剂中。将基于DDPCR的分析应用于RAAV制剂,以定量残留的宿主细胞DNA作为杂质。我们的发现表明该测定可用于RAAV产品中残留宿主细胞DNA的定量和尺寸分布。
尽管公认的肠脑轴连接,但患者之间微生物谱的自然变化阻碍了正常的丰度范围,从而混淆了营养不良对婴儿神经发育的影响。我们从一些初始观察结果中推断出婴儿微生物组的数字双胞胎,预测生态系统轨迹。使用来自88位早产儿(398个粪便样本和32,942个微型类别的32,942个丰度估计)的16 s核糖体RNA谱,该模型(Q-NET)可预测R 2 = 0.69的丰度动态。与典型发展与次优发展的Q-NET相比,我们可以可靠地估计个体赤字风险(MΔ),并确定婴儿在接收器操作员特征曲线下,在98%的98%特异性时,在接收器操作员特征曲线下,在接收器操作员特征曲线下,在接收器操作员特征曲线下,在接收器操作员特征曲线下具有≈76%的面积。我们发现,早期移植可能会减轻≈45.2%的队列的风险,并可能导致不正确的补充产生负面影响。Q-NET是生态系统动力学的生成人工智能模型,具有广泛的潜在应用。
本文档介绍如何通过使用 DECIPHER 包中的 DesignPrimers 函数设计组特异性引物。作为案例研究,本教程重点关注链霉菌属不同物种的全测序基因组的内部转录间隔区 (ITS)。ITS 位于编码 16S 和 23S 核糖体 RNA 的基因之间的染色体上。本文档中的示例旨在从多种密切相关的链霉菌物种中寻找针对单一链霉菌物种的引物。但是,任何一组分成组的比对序列都可以使用类似的策略。例如,使用此程序设计的针对 16S 基因的属特异性引物可在 http://DECIPHER.codes 在线获取。分成组的比对 DNA 序列数据库用作该程序的输入。首先,使用 TileSeqs 函数将序列预处理为重叠的图块,这些图块将作为引物设计的模板 DNA。其次,DesignPrimers 函数确定满足某些设计约束的所有可能引物集,例如在特定实验条件下有效扩增目标组的能力。接下来,对完整的引物集进行评分,以确定其与属于
在过去的几十年里,非法砍伐对热带非洲森林生态系统的完整性和生物多样性保护构成了严重威胁。尽管已经实施了减少非法砍伐的国际条约和监管计划,但大部分木材都是从热带非洲森林地区非法砍伐和交易的。因此,开发和应用分析工具来提高木材和相关产品的可追溯性和识别性对于执行国际法规至关重要。在现有技术中,DNA 条形码是一种很有前途的植物物种分子鉴定方法。然而,虽然它已成功用于区分动物物种,但还没有一套可用于普遍识别植物物种的遗传标记。在这项工作中,我们首先使用基因组略读方法表征了 17 种非洲高价值木材物种的遗传多样性,这些物种来自五个属(Afzelia、Guibourtia、Leplea、Milicia、Tieghemella),分布在西非和中非的范围内,以便重建它们的叶绿体基因组和核糖体 DNA。接下来,我们确定了单核苷酸多态性 (SNP),以区分近亲物种。通过这种方式,我们成功开发并测试了用于物种识别的新型物种特异性遗传条形码。
RNA 聚合酶 (Pol) I 对核糖体 RNA 前体的转录是细胞生长的主要决定因素,并且在许多癌症类型中都观察到了失调。在这里,我们展示了从携带最大亚基上的基因组 GFP 融合的细胞中纯化人类 Pol I,从而可以跨物种进行酶的结构和功能分析。与酵母相反,人类 Pol I 带有单亚基柄,体外转录表明校对活性降低。在接近天然状态下确定人类 Pol I 低温电子显微镜重建可合理化疾病相关突变的影响,并揭示内置于 Pol I 亚基 RPA1 序列中的额外结构域。这个“dock II”结构域类似于无法与 DNA 结合的截短的 HMG 盒,可作为后生动物的下游转录因子结合平台。生化分析、原位建模和 ChIP 数据表明,拓扑异构酶 2a 可通过域被募集到 Pol I,并与包含因子 UBF 的 HMG 盒域协同作用。这些后生动物 Pol I 转录系统的适应性可能允许有效释放在转录泡下游积累的正 DNA 超螺旋。
简介 肝脏和脂肪组织控制着体内脂质稳态。长期食用含有大量脂肪的饮食时,这些器官的相互功能障碍可能会加剧与肥胖相关的代谢紊乱 (1)。其中,血脂异常(包括高甘油三酯血症和高胆固醇血症)是肥胖相关代谢失衡的共同特征,可能引发一系列并发症,即所谓的代谢综合征 (2)。此外,肝脏脂肪变性是脂质稳态紊乱的关键致病因素,可加速动脉粥样硬化,并使血脂异常处于肥胖与心血管和代谢疾病风险的交汇点 (3–5)。因此,一种能降低脂肪量膨胀并改善肝脏脂质处理、预防肝脂肪变性和血脂异常的药理学化合物将为治疗与肥胖表型相关的代谢综合征带来重大进展。核糖体蛋白 S6 激酶 1 (S6K1) 在哺乳动物雷帕霉素靶蛋白复合物 1 (mTORC1) 下游起作用,后者控制对激素和有丝分裂原的反应,还协调细胞对营养物质和能量输入的反应 (6)。S6K1 的激活由一系列有序的构象变化和磷酸化步骤介导,其中 mTORC1 对 T389 的磷酸化为磷酸肌醇依赖性激酶 1 (PDK1) 创造了一个对接位点,从而允许 T229 磷酸化 (7)。
戴蒙德-布莱克凡贫血 (DBA) 是一种遗传性血液疾病,由核糖体蛋白 (RP) 基因(最常见的是 RPS19)的杂合功能丧失突变引起。DBA 的标志性特征是婴儿发生的发育不全性贫血,但一些年龄较大的患者会出现骨髓细胞减少症和多系血细胞减少症。DBA 中贫血的机制尚不完全清楚,对于生命后期发生的全血细胞减少症的了解就更少了,部分原因是患者的造血干细胞和祖细胞 (HSPC) 难以获得,而目前的实验模型并不理想。我们通过使用 CRISPR/Cas9 编辑健康人类供体 CD34 + HSPC 来创建 RPS19 单倍体不足,从而模拟了 DBA。体外分化显示髓系生成正常和红细胞生成受损,如在 DBA 中观察到的那样。移植到免疫缺陷小鼠体内后,RPS19 +/− HSPC 的骨髓再生能力显著降低,表明造血干细胞 (HSC) 受损。RPS19 单倍体不足导致的红细胞和 HSC 缺陷可通过用表达 RPS19 的慢病毒载体转导或通过 Cas9 破坏 TP53 得到部分纠正。我们的研究结果基于对原代人类 HSPC 的基因组编辑,定义了一种可处理、生物学相关的 DBA 实验模型,并确定了一种模拟 DBA 全造血缺陷的相关 HSC 缺陷。
共同称为表面参考组,RNA修饰在调节相关细胞过程的基因控制中起着重要作用。在过去的几十年中,不仅在丰富的核糖体(rRNA)和转移RNA(tRNA),而且在Messenger RNA(mRNA)中鉴定了越来越多的RNA模式。此外,许多动态调节化学标记的作家,橡皮擦和读者也已经表征了。con构建沉积是细胞稳态的先决条件,其改变会导致异常的转录程序,这些程序决定了人类疾病,包括乳腺癌,最常见的女性恶性肿瘤,是女性癌症相关死亡的主要原因。在这篇综述中,我们大小 - tRNA,rRNA和mRNA中存在的主要RNA修饰。我们已经对乳腺癌相关的化学标记进行了分类,并总结了它们对乳腺肿瘤发生的贡献。另外,我们描述了与乳腺癌有关的相关途径的较少丰富的tRNA修饰。最后,我们讨论了当前的局限性,并具有对乳腺癌和其他癌症治疗策略的同意分类组学的观点。
RNA修饰通过在转录后水平上发挥影响分布特征和分子功能来调节细胞生物学的关键作用。在这些修饰中,N7-甲基鸟苷(M7G)是最普遍的一种。近年来,已大大关注M7G修饰的含义。这种修饰存在于不同的RNA分子中,包括转移RNA,Messenger RNA,核糖体RNA和其他非编码RNA。它的调节是通过一系列特定的甲基转移酶和M7G结合蛋白发生的。值得注意的是,M7G修饰与多种癌症类型的各种疾病有关。早期的研究阐明了在肿瘤微环境中免疫生物学调节的背景下M7G修饰的重要性。这项全面的综述最终在与免疫细胞浸润,涵盖T细胞,B细胞和各种先天免疫细胞的调节有关的发现的综合中达到顶峰,所有这些都由M7G修饰策划了。此外,M7G修饰及其调节蛋白之间的相互作用可以深刻影响多种辅助治疗剂的功效,从而有可能用作枢纽的生物标志物和治疗靶标,用于在多种癌症类型中组合进行组合。
蛋白质合成是在所有生物体中发生的重要细胞过程,涉及蛋白质的产生。此复杂的过程由两个阶段组成:转录和翻译。转录发生在细胞核内,DNA充当产生信使RNA的模板(mRNA)。mRNA然后传播到细胞质的核糖体,这是翻译的位置。在这里,mRNA携带的遗传信息被解码以合成多肽链。**转录**是蛋白质合成的初始阶段,其中DNA的遗传密码被转录为mRNA。当RNA聚合酶附着在基因的启动子序列上时,此过程就开始了,促使DNA放松。酶然后读取DNA碱基并组装互补的mRNA链。用作模板的DNA链被称为模板或反义链,而其对应物是非编码或感官链。新形成的mRNA链反射了编码DNA链,尿嘧啶代替了胸腺素。**处理mRNA **涉及新合成的mRNA的进一步细化,也称为前mRNA。在它可以将细胞核作为成熟的mRNA退出之前,它会经历剪接,编辑和聚腺苷酸化,从而改变mRNA以准备翻译。对于有兴趣可视化此过程的人,**蛋白质合成流程图**可以是一个有用的工具。它提供了从DNA转录到最终蛋白质产物的蛋白质合成每个步骤的清晰结构化表示。此外,mRNA经过编辑,改变了某些核苷酸。这样的流程图可以帮助理解基于这种基本生物学功能的复杂相互作用和机制。遗传修饰增强了单个基因的多功能性,使其能够产生多种蛋白质。这是通过称为剪接的过程来实现的,该过程从蛋白质合成流程图中描述了从信使RNA(mRNA)中去除被称为内含子的非编码区域。剪接的mRNA仅由编码区域或外显子组成,这直接有助于蛋白质合成。核糖核蛋白,核中含有RNA的小蛋白,可促进该剪接。例如,由于这种编辑,参与血液中脂质转运的APOB蛋白以两种形式存在。较小的变体是由于插入的停止信号截断了mRNA的插入信号。5'上限过程为mRNA的铅端增加了一个保护性的甲基化盖,从而保护了它免于降解和辅助核糖体附着。一系列腺嘌呤碱基的尾巴标志着mRNA的结论,在其核出口和防御降解酶的防御中发挥了作用。分子生物学的中心教条概述了从RNA到蛋白质的过渡,这一过程称为翻译。这涉及将mRNA中的遗传代码读取以合成蛋白质,如流程图所示。后加工,mRNA将核和核糖体缔合,由核糖体RNA(rRNA)和蛋白质组成。核糖体解密mRNA序列,而转移RNA(tRNA)分子依次传递适当的氨基酸。翻译分为三个阶段:启动,伸长和终止。在开始期间,现在在细胞质中的mRNA与甲基化帽和起始密码子位点的核糖体亚基结合。具有与起始密码子连接的具有匹配的反物质的tRNA,形成了起始复合物。伸长涉及连续供应氨基酸的TRNA,这些氨基酸被添加到新生的多肽链中。每个tRNA转移后其氨基酸后出发,使核糖体沿mRNA进行进展,从而为下一个tRNA腾出空间。这种系统的添加氨基酸构建了多肽,直到该过程结束为止。蛋白质合成是一个重要的细胞过程,最终导致蛋白质的产生。它在两个主要阶段展开:转录和翻译。在转录过程中,DNA的遗传密码被转录为核中的信使RNA(mRNA),包括三个阶段:启动,伸长和终止。mRNA然后将这些遗传指令传输到发生翻译的细胞质核糖体。由核糖体RNA(RRNA)和蛋白质组成的核糖体读取mRNA序列。转移RNA(tRNA)分子根据mRNA代码将适当的氨基酸带入核糖体。rRNA促进了这些氨基酸的粘结,形成了多肽链。该链可能会进一步进行合成后修饰以实现其最终蛋白质结构。mRNA退出核之前,它会经过加工,成为准备翻译的成熟转录本。蛋白质合成的过程与分子生物学的中心教条一致,该过程映射了生物系统中遗传信息的流动。合成后,多肽链可能会折叠成特定的形状,与其他分子相互作用,或在内质网中进行其他修饰以实现其指定的功能。
