摘要核酸ADP-核糖基化及其在催化和水解中的杂化酶在生命的所有王国中都普遍存在。然而,目前不Xpleder Xpled ,其在哺乳动物和细菌pH y生物学中的作用包括 - 植物间冲突。 R ecently, se v eral e xamples of enzymatic sy stems f or RNA ADP-ribosylation ha v e been identified, sho wing that all major types of RNA species, including messenger RNA, ribosomal RNA, and transfer RNA, can be targeted by ADP -ribosyltransf erases (ARTs) whic h at tac h ADP-ribose modifications either to nucle- obases, the backbone核糖或磷酸盐末端。 对于属于宏观域,ARH或Nadar Superf Amilies的RNA ADP-核糖基化的可抗性知之甚少。 在这里,我们表征了ADP-核糖基y drolase对RNA物种ADP-核糖基化的drolytic活性。 我们证明了Nadar ADP-核糖基Y drolase是唯一能够在磷酸末端RNA ADP-核糖基上不活跃的同时,唯一能够对鸟氨酸RNA RNA碱基ADP-核糖基化。 此外,我们揭示了含宏域的PARG酶是唯一具有具有2'-H y DRO Xyl Xyl Xyl Xyl Xyl Xyl Xyl rNA ADP-核糖基催化催化催化sed b y pseudomonAsAsAsAsuginosa效应的特定和有效性的Drolase类型。 moreo ver,使用Rhsp2 /细菌作为e茎,我们证明了par g酶可以作为对抗Xins抗菌RNA-T的保护性免疫酶的作用。,其在哺乳动物和细菌pH y生物学中的作用包括 - 植物间冲突。R ecently, se v eral e xamples of enzymatic sy stems f or RNA ADP-ribosylation ha v e been identified, sho wing that all major types of RNA species, including messenger RNA, ribosomal RNA, and transfer RNA, can be targeted by ADP -ribosyltransf erases (ARTs) whic h at tac h ADP-ribose modifications either to nucle- obases, the backbone核糖或磷酸盐末端。对于属于宏观域,ARH或Nadar Superf Amilies的RNA ADP-核糖基化的可抗性知之甚少。在这里,我们表征了ADP-核糖基y drolase对RNA物种ADP-核糖基化的drolytic活性。我们证明了Nadar ADP-核糖基Y drolase是唯一能够在磷酸末端RNA ADP-核糖基上不活跃的同时,唯一能够对鸟氨酸RNA RNA碱基ADP-核糖基化。此外,我们揭示了含宏域的PARG酶是唯一具有具有2'-H y DRO Xyl Xyl Xyl Xyl Xyl Xyl Xyl rNA ADP-核糖基催化催化催化sed b y pseudomonAsAsAsAsuginosa效应的特定和有效性的Drolase类型。moreo ver,使用Rhsp2 /细菌作为e茎,我们证明了par g酶可以作为对抗Xins抗菌RNA-T的保护性免疫酶的作用。
由于 PARP 抑制剂能够特异性地杀死无法通过同源重组修复 DNA 的肿瘤,因此聚(ADP - 核糖)聚合酶 1 (PARP1) 已成为癌症治疗的中心靶点。DNA 损伤后,PARP1 会迅速与 DNA 断裂结合并触发 ADP - 核糖基化信号。ADP - 核糖基化对于将各种因子募集到损伤部位以及及时将 PARP1 从 DNA 断裂中分离非常重要。事实上,在 PARP 抑制剂存在的情况下,PARP1 会被困在 DNA 断裂处,这是这些抑制剂细胞毒性的潜在机制。因此,任何影响捕获的细胞过程都被认为会影响 PARP 抑制剂的效率,可能导致接受这些药物治疗的患者产生获得性耐药性。DNA 损伤后有许多 ADP - 核糖基化靶点,包括 PARP1 本身以及组蛋白。虽然最近的研究报告称 PARP1 的自我修饰会促进其从 DNA 损伤中释放,但其他 ADP - 核糖基化蛋白对这一过程的潜在影响仍不清楚。本文,我们证明组蛋白 ADP - 核糖基化对于 PARP1 从损伤中及时消散也至关重要,从而导致细胞对 PARP 抑制剂产生耐药性。考虑到 ADP - 核糖基化与其他组蛋白标记之间的串扰,我们的研究结果为开发更有效的 PARP 抑制剂驱动的癌症疗法开辟了有趣的前景。
poly(ADP-核糖)聚合酶1(PARP1)由于PARP抑制剂特异性杀死通过同源重组而缺乏DNA修复的肿瘤的能力,因此已成为癌症疗法的核心靶标。在DNA损伤后,PARP1迅速与DNA断裂结合并触发ADP -Ribosylation信号传导。ADP-核糖基化对于募集各种因素到损害部位以及及时的DNA断裂中PARP1的分解很重要。的确,在存在PARP抑制剂的情况下,PARP1在DNA断裂处被困,这是这些抑制剂细胞毒素的基础机制。因此,任何影响捕获的细胞过程都被认为会影响PARP抑制剂效率,这可能会导致接受这些药物治疗的患者获得的耐药性。DNA损伤后有许多ADP-核糖基化靶标,包括PARP1本身以及组蛋白。最近的发现报道说,PARP1的自动修饰促进了其从DNA病变中释放,但其他ADP核糖基化蛋白对这一过程的潜在影响仍然未知。在这里,我们证明了组蛋白ADP - 核糖基化对于及时从病变中耗散PARP1的核糖基化也至关重要,从而有助于细胞对PARP抑制剂的耐药性。考虑ADP-核糖基化和其他组蛋白标记之间的串扰,我们的发现开辟了有趣的观点,可以开发出更有效的PARP抑制剂 - 驱动的癌症疗法。
PARP家族的ADP-核糖基转移酶包括一组细胞中具有各种调节功能的酶,范围从DNA损伤修复到控制细胞周期进展和免疫反应。多年来,这些知识导致使用PARP1/2抑制剂作为治疗卵巢,泛氧化,前列腺和乳腺癌治疗的主要药物策略,并在编码涉及DNA修复机制的蛋白质的基因中持有突变(合成六)。同时,过去十年在理解受单ADP-核糖基调节的细胞途径方面取得了重大进展,在开发新型选择性化合物以抑制那些赋予具有单ADP-核糖基化活性的parps的细胞中。本综述着重于癌症领域的进展,深入研究了有关酶的一部分(干扰素刺激的PARP)在癌症进展中的作用的最新发现。
抽象的DNA-蛋白交联(DPC)是最普遍和有害的DNA病变之一,是由于暴露于代谢应激,药物或交联药物(如甲醛(FA))而引起的。fa是甲醇代谢,组蛋白脱甲基化,脂质过氧化和环境污染物的细胞副产品。无法修复FA诱导的DPC几乎所有基于染色质的过程,包括复制和转录,导致免疫缺陷,神经变性和癌症。然而,它在很大程度上仍然未知细胞如何维修DPC。由于缺乏鉴定DPC的技术,我们不理解FA的蛋白质类型会阻碍DPC修复的研究。在这里,我们通过将氯化葡萄球菌差异超速离心与HPLC-MAS-MAS光谱法(MS)耦合,从而设计了一种新型的生物测定法,以介绍FA诱导的DPC。使用该方法,我们揭示了FA诱导的人类细胞中FA诱导的DPC的蛋白质组,发现形成DPC的最丰富的蛋白质是PARP1,拓扑异构酶I和II和II和II,甲基转移酶,DNA和RNA聚合酶,组蛋白,组蛋白,以及核糖体蛋白。为了鉴定修复DPC的酶,我们进行了RNA干扰筛选,发现皮瓣核酸内切酶1(FEN1)的下调使细胞对FA过敏。由于Fen1具有5'-FLAP内切酶活性,因此我们假设FA诱导了DPC偶联的5'-FLAP DNA片段,可以通过Fen1处理。的确,我们证明了FA会损坏通过碱基切除途径(BER)转化为5'-FLAP的DNA碱基。我们还观察到受损的DNA碱基与DPC和FEN1共定位。从机械上讲,我们显示了FEN1在体内修复FA诱导的DPC和裂解5'-FLAP DNA底物,这些DNA具有模拟于体外的DPC。我们还发现,FEN1修复酶拓扑异构酶II(TOP2)-DPC,由其抑制剂依托泊苷和阿霉素诱导的诱导的酶促蛋白酶和阿霉素独立于BER途径,而FEN1和FEN1和DPC靶向的蛋白酶sprtn是对两种FA诱导的非Zym Zym Zym Zymations sprapterations spr的可行途径top2-dpcs。值得注意的是,我们发现FA诱导的非酶DPC和酶ToP2-DPC迅速通过聚辅助核糖基化(ParyLation)迅速修饰,这是一种由PARP1催化的翻译后修饰,由PARP1催化的,这是一种由Paryling DNA损伤损害蛋白和DNA Reparion Reparte resation and DNA损伤蛋白的关键DNA损伤效应器和DNA Reparte resation and dna Reparte stotes和DNA Reparte stotes。,我们用HPLC-MS的抗PAR抗体进行了免疫沉淀(IP)测定,并将Fen1鉴定为parylation底物。接下来,我们表明DPC底物的填充信号发出了Fen1,而Fen1的抚养也将Fen1驱动到DPC位点。最后,使用末端ADP-ribose-MS方法的酶促标记,我们将FEN1的E285残基确定为主要的荷置位点,这似乎是FEN1迁移到DPCS所需的。综上所述,我们的工作不仅揭示了FA诱导的DPC的身份,而且还发现了前所未有的PARP1-FEN1核酸酶途径,是一种通用和势在必行的机制,可以修复其他DPC并防止DPC诱导的基因组不稳定。
摘要:线粒体功能障碍和氧化应激是许多人类疾病的突出特征。线粒体功能的失调代表了神经退行性疾病和癌症等疾病的常见致病机制。烟酰胺腺嘌呤二核苷酸(NAD +)池的维持和阳性NAD + /NADH比率对于线粒体和细胞功能至关重要。NAD +的合成和降解及其主要中间体在细胞室之间的运输是维持最佳NAD水平的重要作用,可调节NAD +限制酶,例如Sirtuins(Sirt),例如ADP-ribose聚合酶,综合酶聚合酶和CD38/157 Enzymes,并且在静脉内外表现出色。在这篇综述中,我们介绍并讨论了NAD +,NAD +填充酶,线粒体功能和疾病之间的联系。试图用补充NAD +循环中间体和SIRTUINS和ADP-核糖基转移酶抑制剂来治疗各种疾病,可能会突出一种可能的治疗方法,用于治疗癌症和神经退行性疾病。