我们开发了一种简单的方法来制造微笼和笼状肿瘤球体,用于基于微流控芯片的检测。微笼装置由一系列蜂窝状隔间组成,底部有一层交联和琼脂糖涂层的明胶纳米纤维,顶部有一个 200 μm 孔径的网格。U87-MG 单细胞分散在网格中,孵育后肿瘤球体被限制在每个笼子隔间中。正如预期的那样,肿瘤球体以相同的大小一个接一个地分布在每个隔间中,并且在隔间内生长。球体的最终尺寸受到扩散和限制的限制。如果笼子的高度较小,则肿瘤下方的纳米纤维层可能会因生长中的肿瘤的机械应力而发生偏转。如果笼子的高度很大,肿瘤会自由生长而不受压力,但其大小会受到扩散的限制。在这两种情况下,肿瘤往往保持球形。为了说明该方法的稳健性,将肿瘤笼状装置可逆地集成到用于药物测试的微流体芯片中。我们的结果表明,在切向流条件下,考布他汀 A-4 对肿瘤分解有明显的影响。
近年来,传统的晶体管缩放率发生了急剧过渡。不是平面晶体管的相对简单收缩,而是重新设计了整个几何形状。垂直填料现在是一个全面的(GAA)晶体管设计,该设计允许从栅极偏置对通道区域进行更大的静电控制。也很明显,硅缩放量已经达到其末端,并且正在研究新材料,包括用于高级晶体管节点和广泛的专业应用(例如,宽带的功率设备的宽带隙半导体)。仅使用实验来评估设备制造的可行性非常昂贵且耗时,这就是为什么过程模拟在当今的微型和纳米电子设计周期中必不可少的原因。在本演讲中,我将介绍一个有效的多规模过程模拟框架VIENNAP,我们正在开发该框架,以满足现代半导体制造的需求。如今,必须从所有尺度上处理问题:从原子室到反应堆室本身。
阿纳托利·扎夫多维耶夫 1, 安德烈·克拉帕图克 1, 蒂埃里·博丹 2, 埃里克·麦克唐纳 3, 达内什·莫汉 4, 若昂·奥利维拉 5, 亚历克斯·加伊沃隆斯基 1, 瓦列里·波兹尼亚科夫 1, 金亨燮 6, 弗朗索瓦·布里塞特 2, 马克西姆·霍赫洛夫 1, 马克·希顿 7, 马西莫·罗甘特 8, 米科拉·斯科里克 9, 德米特里·韦德尔 10, 罗曼·科津 1, 伊利亚·克洛奇科夫 1, 斯维亚托斯拉夫·莫特鲁尼奇 1
量子计算利用量子比特的量子现象(叠加和纠缠)执行复杂的计算任务 [4]。在过去的几十年中,各种各样的量子比特已经被实现,包括超导量子比特 [2],[5],半导体量子点 [6],[7] 和捕获离子量子比特 [8]。在上述量子比特中,捕获离子量子比特因其在量子纠缠中的高保真度而备受关注,因为捕获离子本质上是相同的 [9]。为了将捕获离子量子比特应用于量子计算设备,霍尼韦尔将 QCCD(量子电荷耦合器件)架构实现到可编程捕获离子量子计算机中。在 QCCD 中,捕获离子量子计算机可以通过将离子阱与用于量子比特光学寻址的光电元件集成到一个紧凑的独立设备中来实现。据报道,QCCD 实现了 2 4 的量子体积测量,并且几乎不存在串扰 [10]。
已通过肠内途径(包括颗粒,片剂和胶囊)以及通过肠胃外路线(例如静脉内,动脉内,肌肉内和皮下递送)进行了各种药物输送系统。这些药物输送系统有几个缺点,包括首次代谢的可能性,可以降低药物的生物利用度,以及在施用期间的不适或疼痛的可能性[1]。为了解决限制立即释放制剂的约束,已经创建了一系列新型的药物输送系统,例如微球,微孔,纳米颗粒,纳米属粒子和水凝胶[2]。纳米纤维是非常薄的纤维,直径在1到1000纳米之间,由聚合物产生。通过使用聚合纤维和实施受控释放的给药途径,可以每天或两次使用药物,从而改善患者的依从性并避免有毒等离子体峰
图 3:OT 系统和光学原理图,以及通过不同 OT 设置进行光学微型机器人操作的概念图。(a)基于分时生成多个激光点的传统 OT 系统;相应 OT 系统的光学原理图。(b)使用传统 OT 系统灵巧操作光学微型机器人的概念图。(c)可以产生多个激光点的传统全息光镊 (HOT) 系统;相应 HOT 系统的光学原理图。图片来自 [13]。(d)使用 HOT 系统灵巧操作光学微型机器人的概念图。面板 (a) 根据 CC-BY 许可条款从 [14] 复制。版权所有 2020,作者,由 Wiley 出版。面板 (c) 经许可从 [13] 复制。版权所有 2019,IEEE。
本文探讨了能够达到高温的多磁控管烤箱的设计、制造和性能。首先,模拟了合适的波导,并完成了生产过程。然后,模拟了多磁控管烤箱的拟议设计,并提出了适当的尺寸。据报道,生产的多磁控管烤箱的平均功率密度 (PD) 值为 0.37 mW/cm²,这表明了其性能和效率。该值符合标准,对人体安全。我们研究的主要目的是证明波导可以在烤箱中心达到高温而不会相互影响。在这种情况下,观察到磁控管在单、双、三和四模式下工作时产生的温度在烤箱中心逐渐升高。支持这一点的模拟结果表明 S 21 参数为 -177 dB。我们研究中提出和应用的设计高效、易于生产、对人体安全、成本低,可用于达到高温的商业和学术研究。总体而言,多磁控管烤箱设计被证明是一种成功且实用的解决方案,适用于需要高温的应用,展示了其在工业和研究方面的潜力。这项研究的结果为先进加热技术的开发提供了宝贵的见解,表明高温应用的效率和安全性得到了显著改善。
EICT 学院主席兼院长 MNIT 斋浦尔 Narayana Prasad Padhy 教授 EICT 学院首席研究员 Vineet Sahula 教授 EICT 学院 ECE 协调员 Satyasai Jagannath Nanda 博士,ECE EICT 学院联合首席研究员 Lava Bhargava 教授,ECE Pilli Emmanuel Shubhakar 教授,CSE Ravi Kumar Maddila 博士,ECE 目标(电子与 ICT 学院 - 第二阶段) 1) 按照 MeitY 的愿景,通过推广新兴技术领域和其他高优先级领域开展专门的 FDP,这些领域是“印度制造”和“数字印度”计划的支柱。 2) 促进与工业、学术界、大学和其他学习机构的协同与合作,特别是在新兴技术领域。 3) 支持《2019 年国家电子政策》(NPE 2019),该政策旨在将印度定位为 ESDM 领域的全球中心,包括 MeitY 计划/政策,例如半导体和显示器工厂生态系统计划;印度人工智能;国家人工智能计划、IT 硬件和大规模电子制造生产挂钩激励计划;EMC;SPECS;芯片到系统 (C2S);等等。4) 通过联合教师发展计划促进 FDP 的标准化。5) 支持国家教育政策(NEP 2020)的愿景,该政策要求印度教育工作者每年至少要参加 50 小时的专业发展计划。 6)为高等教育机构(HEI)的师生设计、开发和交付有关新兴技术/细分领域/特定研究领域的专业 FDP,以及与 ICT 工具和技术以及其他数字混合领域相关的多学科领域的 FDP,涵盖广泛的工程和非工程学院、理工学院、ITI 和 PGT 教育者。
[2025 年 1 月 20 日至 31 日,16:00 至 20:00] ▪ 半导体制造 - 制造半导体器件(如集成电路 (IC))的过程 ▪ CMOS 制造 ▪ 晶体生长和清洗 ▪ 热氧化和后端技术 ▪ 光刻和蚀刻 ▪ 扩散和离子注入 ▪ 沉积和蚀刻(PVD、CVD、PECVD) ▪ 半导体键合、封装和测试 - 保护半导体器件并将其连接到外部环境的过程 ▪ 组装和包装 ▪ 半导体封装中使用的材料,如陶瓷和塑料 ▪ 用于连接组件的引线键合或倒装芯片键合技术 ▪ 测试封装设备以确保其符合性能规范
