正确引用 K Ali Molla、AK Nayak、MJ Baig、P Bhattacharya、GAK Kumar、S Samantaray、SD Mohapatra、JP Bisen (2024)。NRRI - 水稻研究的卓越先驱。ICAR- NRRI 信息公报。第 28 页 出版者:ICAR-国家水稻研究所所长 Cuttack 753006,Odisha 汇编:Dr. K Ali Molla Shri SK Sinha 设计和布局:Shri SKSinha 2024 年 4 月 © 版权所有 ICAR-国家水稻研究所,Cuttack 在 Print-Tech Offset Pvt. Ltd. 印刷,Bhubaneswar 751 024,Odisha
到2050年,预计全球97亿人口将增加粮食需求,特别是对于主食作物。气候变化,随着温度的极大波动,严重影响了在热带和亚热带地区生长的冷敏感亚洲大米(Oryza sativa L.)。因此,了解对冷应激具有独特耐受性的两个亚洲水稻亚种的响应机制对于提高作物的冷耐受而言很重要。因此,这项研究检验了我们的假设,以解决Japonica如何比Indica更好地忍受冷暴露:(1)Japonica有选择地调整抗氧化活性以相反的活性氧(ROS),而Indica迅速提高了抗氧化活性; (2)Japonica增加了抗氧化剂,以防止长时间暴露后的损害,而Indica未能这样做; (3)japonica减慢了吸水,以维持寒冷期间最少的光合作用,而Indica的摄取机制则被损害; (4)泛素化蛋白Osubc7的过表达可提高冷敏感剂的冷耐受性。要检验这些假设,本研究研究了两种不同冷处理下两种亚种采用的酶促抗氧化活性和水吸收策略。结果揭示了管理ROS和抗氧化活性的独特策略,Japonica表现出波动的抗氧化活性,以潜在地激活防御途径,而Indica表现出快速但可能过度且昂贵的ROS清除反应。此外,这项研究探讨了冷候选基因OSUBC7在冷应激反应和生产力中的作用。此外,观察到对比的水吸收模式,与japonica中度下降相比,Indica饰品在寒冷下显着降低,表明相对结果。在冷敏感康复中的OSUBC7过表达通过提高生长速率,糖代谢和叶绿素含量来增强植物对冷应激的韧性,最终有助于更有效的恢复和更高的生存能力。此外,Osubc7显示出潜在的开花和产量参与,这表明在生产力中起着有希望的作用。总而言之,这项工作证明了亚洲水稻亚种对冷压力的复杂反应机制,强调了ROS感知和管理的重要性,吸水策略以及改善冷应激耐受性的遗传因素。这些发现提供了对这两种亚种的自适应策略的见解,并有助于制定有效的策略,以提高波动环境中的作物冷耐受性。
直播水稻 (DSR) 种植越来越受欢迎,因为它可以节省水、劳力、时间,甚至可以减少导致全球变暖的温室气体排放,从而保护环境。然而,杂草泛滥和杂草稻的进化为这种水稻种植方式带来了重大障碍。由于杂草稻彼此非常相似,没有一种化学药品可以有效控制杂草稻而不损害栽培的水稻。通过种植耐除草剂的水稻品种并结合使用除草剂,可以有效解决这个问题。近年来,我国的研究人员在 N22 突变种群中发现了耐除草剂 (Imazethapyr) 的突变系“Robin”。该突变系已被彻底鉴定,赋予除草剂耐受性的潜在遗传机制已被揭示。利用这一资源,我国已推出许多耐除草剂品种。印度卡塔克国家水稻研究所 (ICAR-NRRI) 最近通过标记辅助回交育种,在热门陆稻品种“Sahbhagidhan”的基础上培育出了耐除草剂水稻品种 CR Dhan 807。该品种已在贾坎德邦、奥里萨邦、恰蒂斯加尔邦、古吉拉特邦、安得拉邦和泰米尔纳德邦六个邦发布并通报,适用于雨养直接播种陆稻。该品种专门针对印度小农和边际农户的高昂杂草管理成本问题。印度国家水稻研究所 (ICAR-NRRI) 发布的《印度耐除草剂水稻研究》研究公报重点介绍了印度耐除草剂水稻的发展情况以及种植 HT 水稻的经济和环境效益。我希望本公报能够成为宝贵的资源,为印度耐除草剂水稻研究提供见解。
本书总结了目前批准用于控制新南威尔士州水稻作物杂草和害虫的农药,以及这些农药安全有效使用过程中的一些重要问题。致谢 本手册中概述的水稻杂草管理策略和计划是与代表新南威尔士州初级产业部的稻米作物保护工作组共同制定的;John Fowler Murray LLS、Rice Research Australia Pty Ltd、Bayer Crop Science Pty Limited、BASF Australia Ltd、Dow AgroSciences Australia Ltd、DuPont (Australia) Ltd、FMC Chemicals Pty Ltd、Nufarm Australia Ltd、Agropraisals Pty Ltd、Charles Sturt University、Rice Extension、AgriFutures Australia 水稻咨询小组主席、航空操作员、新南威尔士州 DPI 农用化学品部门以及 MIA、CIA 和 Murray Valley 的农业综合企业。
合格的候选人可以将其申请在规定的Pro-Forma中发送到电子邮件地址dsteeq.rice@gmail.com最新的19.04.2024,以及申请表(以单词格式为附上),自称为自我证明的扫描批准的原始教育资格证书,体验证书,同一订单,以及其他订单的订单,以及在任何情况下(上升),以供您使用。
水稻是全球一半以上人口的主食。水稻种植在印度约 4300 万公顷的土地上,分布在不同的生态环境中。水稻在开发高产、抗虫/抗病品种以及不同生态环境的生产技术方面取得了重大进展。然而,水稻生产也出现了新的挑战,主要是由于气候变化、土壤质量下降、人均水资源供应量减少、养分利用效率低下以及昆虫和疾病发病率增加。因此,人们正致力于开发具有多种抗逆性的气候适应性水稻品种,以及开发气候智能型生产和保护技术,以确保粮食和营养安全。因此,当前的挑战是通过实施先进的研究成果来提高水稻产量,同时提高气候适应性。
摘要:在对不同的遗传工具和基因组方法的基本描述之后,与现代作物育种最相关(例如,QTL映射,GWAS和基因组选择; tomicksick,QPCR和RNA-SEQ; QPCR和RNA-SEQ; TRENSENESIS和GENE编辑),该论文在赖斯(Rapen)和基因编辑中介绍了相关的介绍其历史和主要的成就,并将其介绍为米兰的介绍,并在米兰的范围内进行了整个趋势,并介绍了麦片的趋势。植物对面临主要非生物限制的反应,包括营养局限性,干旱和耐热性以及氮气使用效率(NUE)。在这些主要农作物中某些遗传方法的时间和发展程度方面存在显着差异。也考虑了与它们独特的基因组复杂性有关的根本原因。基于书目记录,耐旱性和相关主题(即用水效率)是迄今为止分子工具在所考虑的育种目标中最丰富的。耐热性通常比大米和小麦中的NUE更重要,而玉米的耐热性相反。
水稻 (Oryza sativa) 是世界范围内重要的主粮作物;面对气候变化,为了满足日益增长的人口日益增长的营养需求,需要改良水稻的质和量性状。必须开发在胁迫条件下产量稳定或更高的抗逆作物品种。基因组编辑和快速育种提高了水稻育种的准确性和速度。包括基因组编辑在内的新育种技术已在水稻中建立,扩大了作物改良的潜力。最近,其他基因组编辑技术,如 CRISPR 定向进化、CRISPR-Cas12a 和碱基编辑器也已用于水稻的有效基因组编辑。由于水稻基因组较小且与其他谷类作物的同源关系密切,是功能研究的极佳模型系统,因此新的基因组编辑技术不断被开发用于水稻。在这篇综述中,我们重点介绍了用于水稻改良的基因组编辑工具,以应对当前的挑战,并提供了水稻基因组编辑的例子。我们还阐明了扩大基因组编辑的范围和提供同源定向修复模板的系统。最后,我们讨论了安全问题和获取无转基因作物的方法。
摘要 逆转座子是一类可移动的遗传元件,能够通过逆转录 RNA 中间体进行转座。水稻品种日本晴在第 7 号染色体上(Tos17 Chr.7)和第 10 号染色体上(Tos17 Chr.10)含有两个几乎相同的 Tos17 基因组拷贝,Tos17 是一个内源的 copia 样 LTR 逆转座子。前期研究表明,在组织培养过程中,只有 Tos17 Chr.7 具有转座活性。Tos17 Chr.7 已被广泛用于插入诱变,作为水稻基因功能分析的工具。然而,在水稻转化过程中,Tos17 Chr.7 转座可能会产生具有不良性状的体细胞突变,从而影响转基因的评估或应用。本研究利用 CRISPR/Cas9 基因编辑系统构建了一个 Tos17 Chr.7 敲除突变体 D873。 Tos17 Chr.7 在D873上的基因编辑等位基因被命名为Tos17 D873 ,该基因在Tos17 Chr.7的pol基因上有一个873bp的DNA缺失,从而导致GAG-整合酶前结构域和整合酶核心结构域的缺失。虽然Tos17 D873的转录在D873愈伤组织中被激活,但在再生的D873植株中没有检测到Tos17 D873的转座。结果表明GAG-整合酶前结构域和整合酶核心结构域是Tos17 Chr.7转座所必需的,且这两个结构域的缺失不能被水稻基因组中的其他LTR逆转录转座子补充。由于 Tos17 Chr.7 衍生的体细胞克隆诱变在 D873 植物中被阻断,因此 Tos17 D873 等位基因的产生将有助于生产转基因水稻植物,以进行基因功能研究和遗传工程。类似的方法可用于在作物育种中失活其他逆转录转座子。