人工智能是信息科学技术科学界的中心研究领域;同时这也是一个能够彻底改变整个社会的挑战。国家大学间信息学联合会(CINI)已将其一个国家实验室(通常缩写为 AIIS(人工智能和智能系统))专门用于人工智能和智能系统。来自意大利所有大学和国家研究委员会的研究人员都参与了由 Rita Cucchiara 领导的 AIIS 实验室。我请他们在整个 IT 社区的帮助和支持下表达对意大利人工智能研究的全面愿景,这可以为机构环境中制定的研究战略做出贡献。为了响应这一请求,AIIS实验室组建了一个出色的编辑委员会:委员会由非常有能力的人员组成,他们来自不同背景,但都参与了全球人工智能的发展。我想在此向他们和 AIIS 实验室主任以及整个联盟的工作人员表示感谢,感谢他们的奉献和取得的优异成绩。我还要感谢部长会议主席国在该工作的规划阶段所做出的贡献。人工智能不能仅仅在国家框架内思考;除了 CINI-AIIS 编辑委员会的愿景和想法之外,该文件还立即考虑到了优秀的来源,包括近年来与意大利 IT 社区通过密切的科学合作联系最紧密的欧洲和非欧洲国家制定的人工智能战略。然而,最初的提议首先是长期激烈讨论的成果。这一步至关重要,因为我认为最好的想法总是来自于比较和分享。从文件的第一个版本开始,编辑委员会就能够通过国家研究委员会和计算机科学(GRIN)和计算机工程(GII)小组收集和总结来自整个社区的意见,这也极大地促进了思考,这要感谢主席 Paolo Atzeni(GII)和 Paolo Ciancarini(GRIN)的承诺。从所有这些比较中,人工智能的形象已显现为一个非常广泛的领域,分为许多特定的主题,但必须以系统的方式加以解决。正是通过与机构正在进行的工作的协同与合作,以及共同的信念,意大利科学界才能够成功且坚定地为这场新兴革命做出贡献。
首先,我必须感谢我的导师卡洛·卡索纳托 (Carlo Casonato) 和保罗·特拉弗索 (Paolo Traverso),感谢他们相信我,并勇敢地为我提供了在不同学科之间工作的机会。我特别感谢前者在写作过程中给予我的宝贵建议和持续支持,也感谢后者给予我机会经常接触布鲁诺凯斯勒基金会并结识在其中工作的优秀专业人士。我还要非常感谢整个 BioDiritto 研究小组 (Carla、Cinzia、Elisabetta、Giulia、Lucia、Marta I、Marta II、Sergio 和 Simone),他们让我从第一天起就感到宾至如归,不断给予鼓励,并提供许多团队合作的机会,让我始终面带微笑。尤其是玛尔塔,她是我的宝贵向导和忠实盟友,在困难时期我可以向她寻求建议和安慰。我还要感谢安德里亚 (Andrea)、洛伦佐 (Lorenzo)、莫妮卡 (Monica) 以及 Trentino Salute 4.0 团队的其他成员,我非常感谢他们在一个对我来说完全陌生的环境中给予我的欢迎,以及他们为我提供的无数跨学科融合的机会。出于同样的原因,我将永远感激 Paolo、Giorgia 和 Federico,他们和我一样都是与基金会有联系的法学家,为我提供了取之不尽的思想、激励和建议。此外,我还得到了慕尼黑马克斯普朗克社会法和社会政策研究所以及哥本哈根大学生物医学创新法中心研究人员的大力帮助,他们使我在国外的研究期间成为与其他法系的法学家交流的宝贵机会。对于这些机会,我首先要感谢 Ulrich Becker 教授、Timo Minnsen 教授和 Marcelo Corrales Compagnucci 教授,他们负责这些中心并给予了我热烈的欢迎。然后,还有我的家人——自从我出生以来,他们一直默默地支持和忍受着我——还有我的朋友,所有人。安吉拉、安娜、克劳迪娅、克劳迪奥、达维德、弗朗西斯科、弗朗西斯卡、乔治奥、乔瓦尼、朱利奥、艾琳、卢卡、玛蒂娜、罗伯托以及其他从小就陪伴我走过道路的人;安娜、阿尔贝托、安东内拉、基娅拉、克里斯蒂安、克拉拉、费德里科、乔治娅、朱莉娅、米歇尔、奥兰、萨拉、西蒙娜,他们是后来才来的,但在我看来,他们一直都在那里; CNR 的人;马里奥 (Mario)、亚历山德罗 (Alessandro) 和 Dinamo Kave 的所有人;因为足球,队友们成为了旅途中的伙伴; Berdien、Federico、Giovanni、Marta 和 Matteo,感谢这个世界上罕见的真挚友谊;我已不再见到他,但对他的记忆将永远使这些年变得特别。最后,埃琳娜。她知道为什么。
鉴于大学章程,该章程于 2012 年 5 月 14 日以 DR n.1244 号颁布(公布于 2012 年 5 月 19 日官方公报 – 通用系列第 116 号),并经 2014 年 12 月 30 日以 DR n.3429 号修订(公布于 2015 年 1 月 12 日官方公报 – 通用系列第 8 号);已见法律编号。 2010年12月30日第240号; SEEN 部长令 226/2021“关于博士机构和课程认证方法以及认证机构设立博士课程的标准的规定”;鉴于欧洲通用法规n.有关保护个人数据的 679/2016 号立法法令和《个人数据保护法》第 196/2003 号立法法令及其后续修正案;请参阅 2022 年 3 月 25 日第 834 号 DR 发布的《关于博士研究的大学条例》; SEEN 部长令第 201 号2024 年 4 月 24 日第 630 号法令,该法令规定了 2024/2025 年度根据 PNRR 任务 4 第 2 部分投资 3.3 用于共同资助专项计划博士奖学金的资源分配,其中涉及企业的贡献和参与,以及 XXXVIII 周期、XXXIX 周期和 XL 周期剩余资源的重新分配方法;鉴于学术委员会于 2024 年 5 月 28 日通过的决议, n. 68052/2024 以及 2024 年 5 月 29 日董事会决议。 n. 69075/2024,其中批准了 XL 周期的以下内容:有关相关博士课程或国家利益博士课程的更新、新激活和成员资格以及名额分配的提案,以及与 n 相关的安排。墨西拿大学开设 15 个博士课程,开始根据资格和考试进行选拔程序,以便进入 XL 周期的博士研究课程;已查看 DRn1568 日期:2024 年 6 月 13 日,保护。 n.76047/2024,其中宣布了参加墨西拿大学 XL 周期博士课程资格和考试的公开竞争,该通知已在 2024 年 6 月 13 日的大学公告栏 n.90 和随后的 DR n.1663(2024 年 6 月 25 日)上发布。 n.80918/2024,部分整改和 DR n.1773 04.07.2024,prot。 n.85449/2024,除上述征求建议书外,还包括相关附件 1-15;根据部长令第 8 条第 8 款和第 12 款,已查看 2024 年 10 月 14 日第 1531 号 DD MUR,用于量化和重新分配任务 4“教育和研究”第 2 部分“从研究到商业” - 投资 3.3“引入创新博士学位,以满足企业的创新需求并促进企业雇用研究人员”。 630/2024;已看过 DD.RR。批准文件并保留分配第 630/2024 号部长令和 MUR DD 号中提到的奖学金。1531/2024 颁发给符合上述部长令所述研究课题的获奖者;已于 2024 年 12 月 5 日下达 DDG MUR n.1956 号令,用于分配根据部长令 630/2024 和 DD MUR 1531/2024 选定的奖学金的全部金额; 2024 年 12 月 11 日生效的 DDG MUR n.2050 修订并整合了 DDG MUR n.1956/2024;考虑到,根据部长令第。 630/2024 和选拔通知,活动
附件4摘要综合卡世界对能源的需求主要由非可再生资源满足,这对环境产生负面影响,因为它们有助于二氧化碳排放,温室效应和全球变暖。要促进替代清洁能源的开发,需要采取有效的策略。为此,能量杆代表了新建建筑物的有趣应用。能量杆是基础杆,与土壤相互作用的深度可用于开发低焓地热资源,还可以满足建筑物的能源需求。当杆配备了介导的管,直接连接到装甲笼,在内部,通过使用热泵,热电泵,热伏驱动器流体流动。这种液体能够与周围的地面交换热量,可让您在冬季加热建筑物并在夏季冷却,以减少和在某些情况下消除使用化石燃料。因此,能量杆满足了转移结构载荷(从结构到地面)和热量(从地面到结构)的双重任务,反之亦然。近年来,由于能源可持续性可获得的优势,这些系统的使用在公共和私营部门都构成了强烈的冲动,并且非常最新。论文分为七个章节和两个附录。在第1章中,概述了地球能源结构的主要特征。随后,注意力集中在能杆上。本章报道了艺术的状态,它参考了通过现场测试和实验室,数值分析和分析方法推导的杆子行为的主要特征,分组和分组。在第2章中,获得了能杆的最后一个极限状态的分析解决方案。这些解决方案代表了能量杆领域的绝对新颖性,并引起了几位杰出的研究人员对该主题的关注。在描述了所提出的模型后,对于均匀的土壤,BISINGURED和GIBSON的情况,以第二阶的微分方程的形式提出了运动曲线的数学表述。获得与温度变化所引起的轴向努力以及通过广义下土壤条件近似的轴向努力的确切溶液。最后,提出了弹簧的校准以及与实验数据和数值分析的比较。在第3章中描述了数值分析中使用的本构模型的数学结构。特别是,有或没有热部分的线性弹性模型,修改和型凸轮级的MOHR-COULOMB的配方。后者是由作者实施的,因此,在本章中,通过在排水且不排水条件下与三叠纪测试进行比较,可以验证该实现。在本章的最后一部分中,说明了随后的数值分析中使用的热力学配方。特别是,说明了轮廓条件,即用于杆和土壤的元素的类型和大小。 此外,还显示了杆的几何,机械和热特性以及土壤的机械和热土壤。 最后,提出了所使用的本构模型的校准,考虑到选择性模型被选为参考模型,以校准其他模型的参数。 第5章介绍了耦合的热力学热分析的结果。 随后,除了阐明头部键条件的选择外,还出现了极点和地面中的温度曲线。 对于自由极的条件,就轴向努力,下垂,平均变形和空点的位置讨论了每个构型模型的结果。 关于染色的极点,用轴向努力和平均变形描述了全局行为。,说明了轮廓条件,即用于杆和土壤的元素的类型和大小。此外,还显示了杆的几何,机械和热特性以及土壤的机械和热土壤。最后,提出了所使用的本构模型的校准,考虑到选择性模型被选为参考模型,以校准其他模型的参数。第5章介绍了耦合的热力学热分析的结果。随后,除了阐明头部键条件的选择外,还出现了极点和地面中的温度曲线。对于自由极的条件,就轴向努力,下垂,平均变形和空点的位置讨论了每个构型模型的结果。关于染色的极点,用轴向努力和平均变形描述了全局行为。此外,对于位于不同深度的极点界面的4个元素,还报告了响应,以体积和切割变形,间质压,局部下垂,偏离平面的努力以及Q-P计划中的加载路径的状态。本章的末尾致力于主要结果的综合。在第6章中,在单调热载荷条件下的分析方法和数值方法之间进行了比较。最后,报告了一种创新的迭代程序,用于据报道用于定义弹簧刚度的有效切割模块的估计。