GPS社区数据和物联网数据融合Camaliot的机器学习:GNSS IoT数据融合的机器学习技术的应用(Navisp-el1-038.2)
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
6月24日的一周布拉德利花园艺术派对与马尔·马尔坎德女士和斯卡德里女士编码营与里奇特先生C的体育与运动会营地Crim先生与Challandes和Macmath的创意营读者读者戏剧探险队的Charter Camp Science Armio Ambl Mring Gay Armio Arm Inter Arm Criencation Ar Ampecip of Hoffman Eisenhower Arte Orke Criencation-horlich' Rocketeer Edible Science游戏时间夏令营Lego Robot Battle Ground PM Open Studio Hillside Arcade Game Game Challenge挑战Spike Prime Robotics Milltown Camp Music Lab Music Lab Divas和Doodles与Boehme夫人和Smith PE Games及其Mers Smith&Smith Mr. smith&Smith&Smith&Smith Mr. Chartowich Pokemon和Lego Animations and Lego Animations
尽管需求减少归因于许多因素:能源效率,改变能源需求模式和分布式太阳能光伏发电,但我们发现需求减少与辐照度曲线密切相关。由于减少需求的时间范围很短,我们的分析滚动窗口为一年,我们提出了以下假设:由于加速采用了分布式太阳能光伏系统,我们看到需求减少。但是,仅净计量太阳能光伏系统并不能说明还原的幅度。我们目前正在完善我们的计算,以估计非NET计量分布式太阳能光伏生成。
摘要 知识密集型任务对机器学习 (ML) 技术提出了重大挑战。常用的方法,例如大型语言模型 (LLM),在应用于此类任务时往往会表现出局限性。尽管如此,人们已经做出了显著的努力来缓解这些挑战,重点是通过知识图谱 (KG) 来增强 LLM。虽然 KG 在表示知识方面具有许多优势,但它们的开发成本可能会阻碍广泛的研究和应用。为了解决这一限制,我们引入了一个框架,用于使用完善的通用 KG 来丰富小规模领域特定知识图谱的嵌入。采用我们的方法,当链接到大量通用 KG 时,适度的领域特定 KG 可以从下游任务的性能提升中受益。实验评估表明性能显着增强,Hits @ 10 指标最高可提高 44%。这个相对未被探索的研究方向可以催化知识图谱更频繁地融入知识密集型任务中,从而产生更稳健、更可靠的机器学习实现,这比普遍存在的 LLM 解决方案更少产生幻觉。
1. 数据清理和验证工作--------------------------------------------------------- 4 2. 生产力损失--------------------------------------------------------------------------4 3. 成本增加------------------------------------------------------------------------------------------5 4. 数据完整性受损------------------------------------------------------------------------------------------ 5 5. 难以实现数据充分利用--------------------------------------------------------------------------5 6. 集成延迟------------------------------------------------------------------------------------------- 5 7. 用户采用率降低-------------------------------------------------------------------------------------5 利用人工智能清理和丰富产品数据-----------------------------------------6 了解机器学习和自然语言处理------------------------------------------6 AICA 在革命性产品数据管理中的作用--------------------------------------- 7 确保高质量产品数据的 7 个最佳实践----------------------------------------------------------- 8 最后的想法----------------------------------------------------------------------------------------------------- 8
人工智能(尤其是生成式人工智能)的快速发展依赖于数百万从事数据丰富工作的工人——整理、标记和注释数据以训练人工智能模型。这一新兴劳动力类别还包括内容审核员,他们通常负责定义社交媒体平台上允许的内容的界限,以及其他新形式的人工智能支持劳动力。这些工人通常在南半球从事不稳定的合同工或按任务付费的工作,在全球经济中几乎是隐形的。人们对这批劳动力的规模、人口统计或工作条件知之甚少,尤其是在南半球。然而,人工智能劳动力经济的出现对发展中地区具有重大影响,目前还不清楚这些工人如何为全球人工智能行业和他们所居住的经济做出贡献,以及哪些措施可能有助于保护他们。
Area (Kg/Kg/) Yield (Kg/Kg/ha) 60,000 281 60,000 60,000 140,000.5 DR Congo 200,000,000,000,000,000,009,009,037,037,0 160,000,000,000,000,000,000,000,000,000.5 Tanzania 229,000, 216,000,000,000,000,288, 288,000,042,0 - 523,184 – Africa 2,440,684,408.5 2,440,684,384,684,684 368资料来源:ICO,2015年;联合国,2018年; USDA,2019a。
我们研究部署地热能储存的多能源系统的最佳运行,以应对供暖和制冷需求的季节性变化。我们通过开发一个优化模型来实现这一点,该模型通过考虑物理系统的非线性,以及捕捉能源转换、储存和消耗的短期和长期动态,在最先进的基础上进行了改进。该算法旨在最大限度地减少系统的二氧化碳排放量,同时满足给定终端用户的供暖和制冷需求,并确定系统的最佳运行,即通过网络循环的水的质量流速和温度,考虑到地热田温度随时间的变化。该优化模型是参考现实世界的应用而开发的,即安装在瑞士苏黎世联邦理工学院的无能电网。在这里,基于化石燃料的集中供暖和制冷供应由一个动态地下网络连接,地热田作为能源和储存,并满足需要供暖和制冷能源的终端用户的需求。与使用基于集中供热和制冷的传统系统相比,所提出的优化算法可将大学校园的二氧化碳排放量减少高达 87%。这比当前运营策略实现的 72% 减排效果更好。此外,对系统的分析可以得出设计指南并解释系统运行背后的原理。该研究强调了结合每日和季节性储能对于实现低碳能源系统的重要性。