摘要 本研究研究了单晶碲化镉半导体与气体放电等离子体接触时的物理特性。结果表明,等离子体中的载流子与入射红外辐射一起有助于增强气体放电室中的光电流。在气体放电室中电压足够高(超过 2.5 kV)时,可以观察到与等离子体对半导体表面的影响相关的正反馈。理论计算结果和实验经验的结果非常吻合,由此确定了比例系数的物理意义,同时考虑了等离子体对光电探测器光电导的影响。双等离子体接触的使用有助于抑制气体放电室中光电流的空间不稳定性,从而允许在器件输入端使用低电阻光电探测器。首次在单晶碲化镉的基础上在室温下获得了类似的结果。关键词:气体放电电池、碲镉、气体放电等离子体、光电导率、光电滞后、红外摄影。 PACS 编号:95.85.Bh、72.20.-i 收到: 修订: 接受: 发布:2024 年 9 月 16 日 2024 年 10 月 18 日 2024 年 10 月 22 日 2024 年 12 月 26 日 1. 简介
产业升级趋势明显,新技术、新工艺应用明显加快。2023年规模以上工业企业专利申请量达61.4万件,比2018年增长65.1%。规模以上企业是指年营业收入2000万元以上的企业。
图4A描绘了具有不同BNNS分数的质量化的BNNS@环氧复合板。在用BNN掺杂之前,环氧树脂板看起来是黄色和透明的。然而,掺杂后,颜色变为白色,随着BNNS浓度的增加,板的透明度会降低。也可以推断出BNN均匀分散在整个环氧树脂中,从而导致均匀的复合材料。图4B说明了用于评估BNN@Epoxy复合板的Terahertz辐射屏蔽有效性的实验设置。实验设置由Terasense源组成,该源以100 GHz的频率发出连续波,其输出功率为80 MW,光电传输天线和THZ-B检测器(Gentec-EO)。这些组件由LabView Software(Gentec-eo)无缝协调,以从源头获得有效的数据采集和处理。值得注意的是,发射的辐射通过由BNNS@环氧复合板制成的衰减器,精心设计,以满足实验的特定要求。
与我们的角色相关 • 提供选择加入和退出的选项 - 为了更深入地参与,明确我们需要什么样的参与者。 • 每月提供一份 Project Trident 简报,其中包含总结更新,标题清晰。更新应该易于理解,以便
自然化合物的治疗潜力由于研究人员的生物相容性提高和可持续的起源而引起了研究人员的兴趣。Chitosan对其治疗特性及其在食品和饮料领域的广泛应用引起了极大的关注。壳聚糖寡糖(COS)是壳聚糖的衍生物,通常表现出比其母体化合物更好的生物学特性,从而扩大了对其潜在益处的兴趣。壳聚糖具有多种生物学特性,包括抗菌,抗氧化剂和抗炎化合物。研究已经阐明了壳聚糖的特定化学特征,例如分子量和脱乙酰化程度,影响这些生物学活性。值得注意的是,较低的分子量和较高程度的脱乙酰化倾向于增强壳聚糖的生物学特性。因此,研究越来越集中于探索cos的潜力。对这些化合物的研究已在管理各种疾病中揭示了有希望的应用,包括代谢综合征,糖尿病(DM),高胆固醇血症和肥胖症。
您应与您监督下的相关医疗保健人员分享此信息。 报告呼吁 请继续通过黄卡计划向 MHRA 报告疑似药物不良反应 (ADR)。 请报告: • 所有严重或导致伤害的疑似 ADR。严重反应是指致命、危及生命、致残或丧失行为能力的反应、导致先天性异常或导致住院治疗的反应,以及因任何其他原因被认为具有医学意义的反应 • 所有与新药和疫苗相关的疑似 ADR,以黑色三角形标识 ▼ 您可以通过以下方式报告: • 黄卡网站 • Apple App Store 或 Google Play Store 提供的免费黄卡应用程序 • 一些供医疗保健专业人士使用的临床 IT 系统(EMIS/SystmOne/Vision/MiDatabank) 或者,您也可以在周一至周五上午 9 点至下午 5 点之间免费拨打 0800 731 6789 向黄卡计划报告疑似副作用。报告时请提供尽可能多的信息,包括病史、任何同时服用的药物、发病时间、治疗日期和产品品牌名称。 公司联系方式 如果您对本函有任何疑问或需要有关 Seroxat® 的更多信息,请致电 0800 221 441(选项 2),格林威治标准时间周一至周五上午 8:30 至下午 5:00,或发送电子邮件至 ukmedinfo@gsk.com 此致, Hubert Bland 博士 英国和爱尔兰国家医疗总监
摘要 本研究主要研究了通过添加石墨和二硼化铪 (HfB 2 ) 颗粒来显著提高 AA6061 合金混合复合材料的磨损性能。AA6061 合金因其高腐蚀性和耐磨性而广泛应用于航空和汽车领域。采用搅拌铸造法,通过在 AA6061 基体中添加不同百分比的石墨和 HfB 2 颗粒来创建混合复合材料。使用 SEM 和显微硬度计检查所得复合材料的微观结构,以验证增强颗粒的均匀分布和合金的硬度。为了比较混合复合材料与基体 AA6061 合金的摩擦学性能,在不同的负载条件下进行了磨损实验。结果表明,加入 5% 的石墨颗粒和 15% 的 HfB 2 颗粒后,耐磨性显着提高。坚硬的 HfB 2 颗粒提高了承载能力和耐磨性。石墨和 HfB 2 的协同作用产生了一种混合复合材料,与基础 AA6061 合金相比,其磨损率和摩擦系数明显较低。这项研究的成果凸显了混合增强策略在开发具有增强摩擦学性能的先进材料方面的潜力,使其有望成为汽车悬架部件和车顶导轨的替代品。
近几十年来,胃肠道被认为是人体最大的免疫器官。胃肠道具有多样化的微生物群,已成为疾病治疗的重要靶点( Xu et al.,2023;Li et al.,2024)。实验证据表明,高血压、胰岛素抵抗、肥胖、高血糖、高血脂等代谢紊乱与肠道菌群密切相关(Shao et al.,2022;Zhang H. et al.,2023;Ouyang et al.,2024;Li et al.,2024)。Makki et al.(2018)发现高脂饮食会降低微生物多样性,改变肠道微生物代谢,导致代谢综合征的发生。Li et al.(2019)研究通过调节高脂饮食诱导的大鼠的肠道菌群,可预防高脂血症和高胆固醇血症,提示改善胃肠道健康可能是治疗疾病的新策略。益生菌是胃肠道中占主导地位的菌群,有助于改善食物的消化。植物乳杆菌乳酸杆菌、酪丁酸梭菌、青春双歧杆菌、嗜热链球菌是胃肠道中重要的细菌,其中乳酸杆菌为兼性厌氧革兰氏阳性菌,有报道指出,乳酸杆菌可以改善肠道炎症,预防疾病的发生或加重,也可用于治疗精神疾病和
网络药理学是一种多靶点药物发现方法,用于探索药物与生物网络之间的相互作用。它有助于了解草药的治疗机制,特别是对于糖尿病等复杂疾病。Chandraprabha Vati 是一种经典的阿育吠陀配方,含有 37 种成分,其中许多成分具有抗糖尿病作用。本研究旨在研究 Chandraprabha Vati 的植物化学物质与抗糖尿病药物格列美脲之间的相互作用。使用 IMPPAT 选择 Chandraprabha Vati 的生物活性成分。使用 Swiss ADME 进行药代动力学预测,并使用 Way2Drug 预测药物间相互作用。使用 STRING 数据库构建蛋白质-蛋白质相互作用 (PPI),并在 Cytoscape 中进行网络分析。使用 DAVID 数据库进行基因本体和 KEGG 富集分析。药代动力学分析确定了 11 种关键植物化学物质,它们对参与格列美脲代谢的酶 CYP2C9 具有不同的影响。靶标重叠分析显示格列美脲和植物化学物质之间存在 34 个共同的枢纽基因,包括 EGFR、ESR1、PIK3CA、CYP2C9 和 SRC。这些基因与药物相互作用有关,其中 EGFR 成为关键因素。Chandraprabha Vati 中的植物化学物质,特别是 20-羟基孕-4-烯-3-酮、β-石竹烯和豆固醇,可能通过抑制 CYP2C9 与格列美脲相互作用。这可能会改变格列美脲代谢,增加不良反应的风险。需要进一步的临床研究来证实这些发现并指导安全的联合用药。
据估计,超过三分之二的赫布里底群岛是在任职期(约6,000个克罗夫特人),而这些岛屿现在在社区土地所有权下拥有很大比例的土地和人口。在2012年4月至2017年3月的五年中,赫布里底外的住房完成总数为434,大约61%的住房由私人房屋建造组成。由于当前的财务环境和面临的困难,例如获得抵押贷款,高建造成本,预计接下来的5年期可能会进一步减少私人房屋完成数量。外赫布里底群岛的空置住房百分比最高,为8.3%,第二居所的第二高百分比为5.4%。