类别申请信息申请类型NDA申请编号214662优先级或标准优先级提交日期1/29/2021收到的日期1/29/2021 PDUFA目标日期9/29/2021 2021分司/办公室/办公室肝病学和营养(DHN)审查日期(DHN)审查日期9/23/20221223/20221 ARMAT ARMITATIRE(MARRAT) Livmarli药理学类肠胃胆酸转运蛋白(IBAT)抑制剂代码名称胆固性肝疾病(即,原发性胆道肝硬化和原发性硬化性胆管炎)(7060106)(7060106)Dosage form(s)/formulation(s) Liquid formulation Dosing regimen 380 mcg/kg/day Applicant proposed indication(s)/ population(s) Treatment of cholestatic pruritus in patients with Alagille syndrome 1 year of age and older Proposed SNOMED indication Alagille syndrome (code 31742004 arteriohepatic dysplasia disorder) Regulatory action Approval Approved dosage (如果适用)请参见上述剂量方案批准的指示(如果适用)(如果适用),请参见上述指示(s)/人群批准的指示术语(如果适用)
1. Reyes‑Habito CM、Roh EK。化疗药物的皮肤反应和癌症的靶向治疗:第二部分。靶向治疗。J Am Acad Dermatol 2014;71:217.e1‑217.e11。2. Allegra CJ、Rumble RB、Hamilton SR、Mangu PB、Roach N、Hantel A 等。RL 扩展转移性结直肠癌的 RAS 基因突变检测以预测对抗表皮生长因子受体单克隆抗体疗法的反应:美国临床肿瘤学会。J Clin Oncol 2016;34:179。3. Coppola R、Santo B、Ramella S、Panasiti V。表皮生长因子受体抑制剂的新型皮肤毒性。一例接受西妥昔单抗治疗的转移性结直肠癌患者出现擦烂样皮疹。 Clin Cancer Investig J 2021;10:91-2 4. Lacouture ME。EGFR 抑制剂的皮肤毒性机制。Nat Rev Cancer 2006;6:803-12。5. Eilers RE Jr.、Gandhi M、Patel JD、Mulcahy MF、Agulnik M、Hensing T 等。接受表皮生长因子受体抑制剂治疗的癌症患者的皮肤感染。J Natl Cancer Inst 2010;102:47-53。6. Elmariah SB、Cheung W、Wang N、Kamino H、Pomeranz MK。系统性药物相关性间擦疹和屈侧皮疹 (SDRIFE)。Dermatol Online J 2009;15:3。 7. Weiss D、Kinaciyan T. 甲芬那酸诱发的对称性药物相关性擦擦和屈侧皮疹 (SDRIFE)。JAAD Case Rep 2019;5:89-90。8. Kumar S、Bhale G、Brar BK。氟康唑诱发的对称性药物相关性擦擦和屈侧皮疹 (SDRIFE):一种常用药物的罕见副作用。Dermatol Ther 2019;32:e13130。9. Li DG、Thomas C、Weintraub GS、Mostaghimi A. 强力霉素诱发的对称性药物相关性擦擦和屈侧皮疹。Cureus 2017;9:e1836。10. Moreira C、Cruz MJ、Cunha AP、Azevedo F. 对称性
基于小分子受体(SMA)的全PSC。 [1–8] 近年来,随着新型高效PD和聚合小分子受体(PSMA)的快速发展,全PSC的能量转换效率(PCE)已升至16%。 [9–14] 然而,目前报道的PCE超过13%的全PSC仅有少数,仍然远低于最先进的基于SMA的全PSC。更重要的是,它们的机械性能还远远达不到可穿戴设备的要求(即要求裂纹起始应变(COS)至少为20–30%)。阻碍基于PSMA的全PSC性能的主要障碍是强烈相分离的共混物形貌,这是由于高分子量PD和PSMA的分离导致的,从而导致电荷产生和传输无法优化。 [15,16] 这些非最优形态通常包括共混膜中的许多缺陷位点(即尖锐的畴-畴界面和大的聚合物聚集体),限制了低 COS 下的机械强度和拉伸性。[17–19] 此外,聚合物共混物的相分离受 PD 和 PA 的聚集和结晶行为的影响。特别是,含有高度结晶、刚性 SMA 单元的 PSMA 通常具有非常强的结晶和聚集特性,导致强烈的相分离
摘要 我们使用飞机调度场景中的尾部分配和精确覆盖问题,对迄今为止最大的量子退火器(5000+ 量子比特量子退火器 Advantage 及其 2000+ 量子比特前身 D-Wave 2000Q)的量子处理单元进行了基准测试。基准测试集包含小型、中型和大型问题,其中既有稀疏连接实例,也有几乎完全连接的实例。我们发现,Advantage 在几乎所有问题上都优于 D-Wave 2000Q,成功率和问题规模都有显著提高。特别是,Advantage 还能够解决 D-Wave 2000Q 无法再解决的具有 120 个逻辑量子比特的最大问题。此外,仍然可以由 D-Wave 2000Q 解决的问题可以通过 Advantage 更快地解决。然而,我们发现,D-Wave 2000Q 可以在不需要 Advantage 上存在的许多新耦合器的情况下解决稀疏连接问题并获得更好的成功率,因此提高量子退火器的连通性本身并不会提高其性能。
表格表 表 1:提交前和提交时监管活动摘要 ...................................................................................................................... 28 表 2:西罗莫司、依维莫司和 ABI-009 对肿瘤生长和存活率的影响(FDA 表) ................................................................................................................ 36 表 3:第 1、4 和 7 天肿瘤和血液中的药物浓度(FDA 表) ............................................................................................. 37 表 4:使用 ABI-009、西罗莫司或依维莫司治疗后磷酸化 S6 阳性百分比面积(FDA 表) ............................................................................................................. 37 表 5:西罗莫司和 Secorapamycin 在大鼠中的药代动力学参数(FDA 表) ............................................................................................. 40 表 6:ABI-009 临床药理学重点 ............................................................................................................................. 48 表 7:申请人对内在因素协变量亚组的分析(报告为平均值和 95% 可信区间) ........................................................................................................................................... 66 表 8:NDA 中包括的已完成和正在进行的临床研究 .......................................................................... 72 表 9:研究管理结构 ...................................................................................................................... 78 表 10:PEC-001 研究研究者现场审计 ............................................................................................. 85 表 11:PEC-001 研究服务提供商审计 ............................................................................................. 85 表 12:患者处置 ...................................................................................................................... 87 表 13:患者处置(FDA 分析) ............................................................................................. 88 表 14:方案偏差(入组分析集) ............................................................................................. 89 表 15:主要终点敏感性分析 ............................................................................................................. 90 表 16:患者人口统计学和基线特征(安全性分析集) ................................................................. 91 表 17:患者人口统计学和基线特征(疗效分析集) ................................................................. 93 表18:癌症病史(安全性分析集) .............................................................................. 94 表 19:PEComa 既往癌症治疗史(安全性分析集) .............................................. 96 表 20:PEComa 既往癌症全身治疗(安全性分析集 - 转移性组) …………………………………………………………………………………………………………………………………97 表 21:PEComa 既往癌症放射治疗(安全性分析集) ........................................ 98 表 22:PEComa 既往癌症相关手术(安全性分析集) ........................................ 100 表 23:超过 1 名患者按身体系统和医疗状况划分的既往和当前病史(安全性分析集) ............................................................................................................................. 103 表 24:超过 1 名患者按身体系统和手术程序划分的总体手术史(安全性分析集) ............................................................................................................. 105 表 25:给药周期数、治疗持续时间和输注次数(安全性分析集) ............................................................................................................................. 107 表 26:至少中断一次、剂量减少或剂量减少速率的患者数量以及中断输注的次数(安全性分析集) ............................................................................. 108 表 27:每位患者的实际剂量、每位患者的累积剂量、平均剂量强度和方案剂量百分比(安全性分析集) ............................................................................................. 110 表 28:超过 1 名患者总体的伴随用药发生率按 WHO 治疗主组划分(安全性分析集)..................................................................................................... 112 表 29:伴随手术发生率(安全性分析集)...................................................................................... 114
能源转型 一个完善且透明的绿色低碳氢能市场可以促进欧洲能源转型,并通过以下方式帮助欧洲成为可再生能源领域的第一: • 有助于实现欧盟到 2050 年减少 80-95% 温室气体排放 (GHG) 的目标; • 增加可再生能源的需求和供应; • 提高能源安全和能源多样性; • 通过能源储存促进可再生能源进一步融入电网; • 提供绿色氢能市场数量和质量的可见性; • 促进绿色增长和可持续性。 工业和运输脱碳 优质氢能有助于减少各种能源密集型行业和部门的碳排放,否则这些行业和部门很难脱碳。 • 到 2050 年,优质氢能可帮助至少 60% 的运输部门脱碳。 • 炼油厂使用优质氢能代替目前使用的温室气体密集型氢能,对柴油和汽油等传统燃料进行脱碳。 • 优质氢气可以引领其他行业进一步脱碳(例如钢铁制造、氨、化学工业等)以消费者为中心优质氢气的 GO 将消费者置于中心,消费者是实现欧盟能源转型的关键驱动力,也是能源联盟的主要目标:• 它提供透明度,从而增强消费者的权利。• 欧盟范围内的优质氢气 GO 贸易为整个欧盟提供优质氢气,包括未生产优质氢气的地区。
表 31:按治疗划分的人口统计数据 – 单药 asciminib 治疗在筛选时未发生 T315I 突变的 CML-CP 患者(FAS)............................................................................................................. 170 表 32:按每个时间点的 MMR 率 – 单药 asciminib 治疗在筛选时不携带 T315I 突变且未处于 MMR 的 CML-CP 患者-MMR 可评估(研究 CABL001X2101)(FAS)。 173 表 33:按每个时间点的 MMR 率 – 单药 asciminib 治疗在筛选时不携带 T315I 突变且未处于 MMR 的 CML-CP 患者-MMR 可评估(研究 CABL001X2101)(FAS)。 175 表 34 按治疗划分的人口统计学信息 – 筛选时携带 T315I 突变的 CML-CP 患者使用 asciminib 单药治疗(FAS) ............................................................................................................. 180 表 35:暴露持续时间 – 研究 CABL001A2301、研究 CABL001X2101 和 asciminib 安全池(安全集) ............................................................................................................. 192 表 36:死亡摘要 – 研究 CABL001A2301、研究 CABL001X2101 和 asciminib 安全池(安全集) ............................................................................................................. 195 表 37:按首选术语和分级划分的严重不良事件,与研究治疗关系无关 1 – 研究 CABL001A2301、研究 CABL001X2101 和 asciminib 安全池(安全集) ............................................................................................................................. 201 表38:按首选期限和分级划分的导致研究治疗停止的不良事件 - 研究 CABL001A2301、研究 CABL001X2101 和 asciminib 安全池(安全组)205 表 39:按首选期限和分级划分的导致剂量中断或调整的不良事件,在任一治疗组中至少有 2 名患者发生-(研究 CABL001A2301)(安全组)......................................................................................... 208 表 40:不良事件(研究 CABL001A2301 和 asciminib 安全池中至少为 5%,研究 CABL001X2101 1 中至少为 15%)(安全组)......................................................................................... 211 表 41:在 Ph+ CML-CP 患者中,按首选期限和 asciminib 治疗发生在 10% 的患者中,无论与研究治疗的关系如何,筛选时的 T315I 突变 – 研究 CABL001X2101(安全集) .............................................................. 219 表 42:核心数据表按 SOC 和 ADR 列出的药物不良反应频率和频率类别 – 研究 CABL001A2301、研究 CABL001X2101 和池 A(安全集) ................................................................................................................ 222 表 43:核心数据表(CDS)按 SOC 和 ADR 列出的药物不良反应频率和频率类别 – 研究 CABL001X2101 和池 A:单药 asciminib 在筛选时携带 T315I 突变的 CML-CP 患者中的应用(安全组) ........................................................... 227 表 44:可披露的财务安排和利息摘要 ............................................................................................. 269 表 45:用于测量人血浆中 ABL001 的生物分析方法的方法性能摘要 ............................................................................................................. 273 表 46:来自 FDA 最终群体 PK 模型的 PK 参数估计值 ............................................................................. 282 表 47:FDA 对第 24 周 MMR 概率的多变量暴露-反应分析与无 T315I 突变患者的 Asciminib 平均每日 AUC ............................................................................................................................. 294 表 48:FDA 对第 24 周 MMR 概率的多变量暴露-反应分析与无 T315I 突变患者的 Asciminib 平均每日 AUC .............................................................................................................携带 T315I 突变患者的 Asciminib 平均每日 AUC .............................................................................. 294 表 49. Asciminib ADAM-PBPK 模型的输入参数 ........................................................................ 307 表 50:健康受试者单次给药和癌症患者多次给药后 Asciminib 的预测和观察到的 PK 参数 ................ ...
接受ALK酪氨酸激酶抑制剂(ALK TKIS)治疗的ALK重态非小细胞肺癌(NSCLC)患者的预后更好。在本案报告中,我们提供了一种新型的ALK融合,XPO1-ALK(基因间),并通过晚期肺癌患者的下一代DNA测序确定。在5个月进行了Brigatinib靶向治疗后,患者显然会出现肿瘤分解,这种治疗导致部分缓解。迄今为止,该患者在Brigatinib治疗后经历了5个月的无进展生存期。除了报告新型ALK融合,XPO1-ALK(基因间)以及Brigatinib治疗对肺癌的敏感性和安全性外,这项研究还增加了ALK阳性NSCLC中已知的ALK融合伙伴的列表。此病例报告具有显着的临床参考。
卫生与公众服务部 公共卫生服务部 食品药品管理局 药物评估和研究中心 ________________________________________________________________ 日期:2022 年 5 月 31 日 来自:Lois M. Freed 博士 药理学/毒理学-神经科学部主任 神经科学办公室 主题:NDA 215515 (Amvuttra, vutrisiran) ________________________________________________________________ Alnylam Pharmaceuticals 于 2021 年 4 月 14 日提交了 NDA 215515,用于治疗成人遗传性转甲状腺素蛋白介导的淀粉样变性多发性神经病。推荐的给药方案为每 3 个月 25 毫克(Q3M),在人类中血浆 C max 和 AUC 分别为 0.12 µ g/mL 和 0.80 µ g*hr/mL。为支持 NDA 批准而提交的非临床研究与临床开发期间部门提供的建议和反馈一致。Hawver 博士审查了非临床数据(药理学/毒理学 NDA 审查和评估,NDA 215515,David B. Hawver,博士,2022 年 3 月 2 日)。Hawver 博士得出结论,非临床数据足以支持 NDA 的批准,其中 2 年小鼠和大鼠致癌性研究是上市后要求 (PMR)。Vutrisiran 是一种 21 核苷酸 siRNA-GalNAc 结合物,靶向突变型和野生型 (WT) 转甲状腺素蛋白 (TTR) mRNA。在输送到肝脏并掺入 RNA 诱导的沉默复合物 (RISC) 后,vutrisiran 会导致 TTR mRNA 敲低,随后突变型和 WT TTR 蛋白的形成减少。人类和食蟹猴的 TTR mRNA 结合区完全同源,但啮齿动物(小鼠、大鼠)或兔子的 TTR mRNA 结合区不完全同源。因此,vutrisiran 仅在猴子中具有药理活性。在符合 GLP 标准的 Sprague Dawley (SD) 大鼠(13 周,6 个月)和食蟹猴(13 周,9 个月)的皮下 (SC) 毒性研究中测试了 vutrisiran 的一般毒性。
研究了工艺气体、激光扫描速度和样品厚度对激光粉末床熔合制备的 Ti-6Al-4V 中残余应力和孔隙率形成的影响。使用纯氩气和氦气以及它们的混合物(30% 氦气)来建立残余氧含量低至 100 ppm O 2 的工艺气氛。结果表明,通过 X 射线衍射测得的薄样品(220 MPa)的亚表面残余应力明显低于长方体样品(645 MPa)。这种差异归因于较短的激光矢量长度,导致热量积聚,从而实现原位应力释放。即使增加了扫描速度,在工艺气体中添加氦气也不会在简单的几何形状中引入额外的亚表面残余应力。最后,在氦气下构建的悬臂(从底板移除后)的偏转比在氩气和氩气-氦气混合物下制备的悬臂的偏转更大。该结果表明,由于氦气的高热导率、热容量和热扩散率,在氦气下制造涉及大面积扫描的复杂设计可能受到更高的残余应力。
