推动是一项必不可少的非划算操作技能,用于任务,从预抓操作到场景重新排列,关于场景中的对象关系的推理,因此在机器人技术中广泛研究了推动动作。有效使用推动动作通常需要了解受操纵对象的动态并适应预测与现实之间的差异。出于这个原因,在文献中对推动作用进行了效果预测和参数估计。但是,当前方法受到限制,因为它们要么建模具有固定数量对象的系统,要么使用基于图像的表示,其输出不是很容易解释并迅速累积错误。在本文中,我们提出了一个基于图神经网络的框架,以根据触点或关节对对象关系进行建模,以效应预测和参数估计推动操作。我们的框架在真实和模拟环境中都得到了验证,这些环境包含不同形状的多部分对象,这些对象通过不同类型的关节和具有不同质量的对象连接,并且在物理预测上的表现优于基于图像的表示。我们的方法使机器人能够预测并适应其观察场景时推动动作的效果。它也可用于使用从未看过的工具进行工具操作。此外,我们在基于机器人的硬盘拆卸的背景下证明了杠杆起作的6D效应预测。
-------------------------------------------------------------------------------------------- 这是一份已电子签名的电子记录的表示。以下是该电子记录的所有电子签名的表现形式。 -------------------------------------------------------------------------------------------------------- /s/ ------------------------------------------------------------------------
抵抗[5]。尽管过程优化了重大的优化工作,但由PBF-LB和PBF-EB生产的316升零件仍然无法满足最佳功能性能所需的表面质量要求。据报道,由PBF-LB和PBF-EB产生的316L部分的典型表面粗糙度(RA)值分别为〜10 µm [9]和〜30 µM [10]。在PBF-LB和PBF-EB之间获得的表面粗糙度的巨大差异是无关的。在比较PBF-LB和PBF-EB时,已经报道了TI6AL4V的可比较表面粗糙度值。对于PBF-LB标本,在构建方向上测量了〜8 µm的RA,而对于PBF-EB,观察到RA为〜23 µm [11]。无论相关的AM过程如何,印刷的部分通常都需要后处理才能实现所需的表面
合成生物学和人工智能 (AI) 的进步为现代生物技术提供了新的机遇。高性能细胞工厂是工业生物技术的支柱,最终决定了生物基产品在与石油基产品的激烈竞争中是成功还是失败。迄今为止,合成生物学面临的最大挑战之一是以一致和高效的方式创建高性能细胞工厂。作为所谓的白盒模型,已经开发了许多代谢网络模型并将其用于计算菌株设计。此外,近年来,人工智能驱动的菌株工程取得了巨大进展。这两种方法都有优点和缺点。因此,人工智能与代谢模型的深度整合对于构建具有更高滴度、产量和生产率的优质细胞工厂至关重要。本综述总结了最新的先进代谢模型和人工智能在计算菌株设计中的详细应用。此外,还讨论了人工智能和代谢模型深度整合的方法。预计由人工智能驱动的先进机械代谢模型将为未来几年高效构建强大的工业底盘菌株铺平道路。
2.4 毫克索马鲁肽的疗效在三项 68 周随机双盲安慰剂对照试验和一项 68 周随机双盲安慰剂戒断试验中得到评估。第一项随机安慰剂对照试验评估了索马鲁肽作为低热量饮食和运动辅助疗法对非糖尿病患者的效果,第二项评估了索马鲁肽作为饮食和运动辅助疗法对 2 型糖尿病患者的效果,第三项评估了索马鲁肽作为强化饮食和运动辅助疗法对非糖尿病患者的效果。在随机戒断试验中,所有入组患者在 20 周剂量递增期内均接受索马鲁肽治疗,达到 2.4 毫克目标剂量的患者被随机分配继续接受索马鲁肽治疗或戒断安慰剂治疗,再接受 48 周治疗。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
2023 年 10 月 15 日 — 使用或威胁使用武力或暴力对付某人,或违反为保护现任或现任人员而发布的合法命令……
LLM 在一个过程中逐字生成较长的文本。为了生成每个单词,LLM 根据前面的上下文为英语词汇表中的每个单词分配一个概率。上下文最初是我给系统的提示,然后通过添加 LLM 到那个时间点生成的每个单词来扩展。该模型不是取最有可能的单词,而是根据其可能性随机“采样”下一个单词。图中单词的颜色表明模型认为它在前面的上下文中出现的可能性有多大。“accomplished” 一词被涂成红色,因为模型认为它是低概率的延续,在前面的上下文中可能性小于 1%。以下是它可以选择的其他更高概率的单词,而不是输出“accomplished”:
电动汽车中的抽象电池安全性是一项全面的工程努力,需要在每个阶段进行一致的考虑,包括电池材料,电池组设计和电池管理系统(BMS)。本综述着重于锂离子电池的安全管理策略和实际应用。电池安全的管理主要包括充电和放电安全,高压安全性和热安全性。在其中,充电和排放安全管理旨在防止电池损坏或由过度充电或出院造成的安全事件。高压安全管理涉及检测绝缘断层,过电流和其他潜在风险,以防止电气危害。热安全管理确保单个电池电池,模块和电池组保持最佳的工作温度范围和均匀的温度分布,从而防止热失控。
