为了增强轨道几何维护计划并降低基础设施成本,准确预测由镇流器和子级别的循环负载引起的累积永久性轨道变形(沉降)对于铁路基础设施管理者至关重要。本文提出了一种新的方法,可以基于一项用于评估短期和长期轨道性能的混合方法研究的广泛参数研究,以降低计算成本来预测长期结算。将各种机器学习技术进行比较并采用用于开发预测模型,这些模型使用归档的压载轨道演示者的测量结果进行了验证。使用多个指标评估每个模型的性能和准确性,并进行了敏感性分析以识别有影响力的解释变量。值得注意的是,开发的随机森林模型与现场测量的定居数据表现出了良好的一致性。这种方法弥合了差距是数值模拟和经验数据,从而对永久轨道变形有了改进的整体理解。该方法具有在铁路轨道维护和更新管理的计算决策支持系统中实施的潜力。
采用定向能量沉积技术在用于硬面堆焊的热作工具钢基材上沉积了具有不同层数的冷作工具钢。本研究涉及了覆层工具钢中的缺陷和微观结构。在沉积区发现了包括孔隙和裂纹在内的缺陷,其数量随着沉积高度或层数的增加而增加。大的不规则孔隙主要位于沉积层的下部区域。此类孔隙的形成归因于合金元素在孔隙表面的偏析和热量输入不足。非平衡共晶微观结构是孔隙邻近区域的特征。另一方面,开裂往往发生在沉积层的上部。确定了导致开裂的两个重要因素。第一个是微观结构梯度,当从底部移动到顶部沉积层时,微观结构梯度从细胞状树枝状晶变为柱状树枝状晶。其次,根据Thermocalc软件的模拟,沉积的冷作工具钢表现出相对较大的凝固温度范围,从而对热裂纹具有很高的敏感性。
接受ALK酪氨酸激酶抑制剂(ALK TKIS)治疗的ALK重态非小细胞肺癌(NSCLC)患者的预后更好。在本案报告中,我们提供了一种新型的ALK融合,XPO1-ALK(基因间),并通过晚期肺癌患者的下一代DNA测序确定。在5个月进行了Brigatinib靶向治疗后,患者显然会出现肿瘤分解,这种治疗导致部分缓解。迄今为止,该患者在Brigatinib治疗后经历了5个月的无进展生存期。除了报告新型ALK融合,XPO1-ALK(基因间)以及Brigatinib治疗对肺癌的敏感性和安全性外,这项研究还增加了ALK阳性NSCLC中已知的ALK融合伙伴的列表。此病例报告具有显着的临床参考。
摘要 皮肤是人体最大的器官,环境因素与人体皮肤的相互作用会导致一些皮肤疾病,如痤疮、牛皮癣和特应性皮炎。作为人体免疫防线的第一道防线,皮肤在人体健康中发挥着重要作用,它通过阻止受皮肤微生物群影响很大的病原体入侵。尽管人体皮肤是微生物的具有挑战性的生态位,但人体皮肤上却寄生着各种共生微生物,这些微生物塑造了皮肤环境。皮肤微生物群会影响人体健康,其失衡和菌群失调会导致皮肤疾病。本综述重点介绍了我们对皮肤微生物群及其与人体皮肤相互作用的理解进展。此外,还描述了微生物群在皮肤健康和疾病中的潜在作用,并重点介绍了一些关键物种。讨论了微生物相关皮肤病的预防、诊断和治疗策略,如健康饮食、生活方式、益生菌和益生元。讨论了使用合成生物学调节皮肤微生物群的策略,作为优化皮肤-微生物群相互作用的一个有趣途径。总之,本综述提供了有关人类皮肤微生物群恢复、人类皮肤微生物群与疾病之间的相互作用以及设计/重建人类皮肤微生物群的策略的见解。关键词:皮肤、微生物群、共生微生物、合成生物学、组学技术、宿主-皮肤微生物群相互作用、皮肤疾病、痤疮
2023 年 10 月 15 日 — 使用或威胁使用武力或暴力对付某人,或违反为保护现任或现任人员而发布的合法命令……
基于小分子受体(SMA)的全PSC。 [1–8] 近年来,随着新型高效PD和聚合小分子受体(PSMA)的快速发展,全PSC的能量转换效率(PCE)已升至16%。 [9–14] 然而,目前报道的PCE超过13%的全PSC仅有少数,仍然远低于最先进的基于SMA的全PSC。更重要的是,它们的机械性能还远远达不到可穿戴设备的要求(即要求裂纹起始应变(COS)至少为20–30%)。阻碍基于PSMA的全PSC性能的主要障碍是强烈相分离的共混物形貌,这是由于高分子量PD和PSMA的分离导致的,从而导致电荷产生和传输无法优化。 [15,16] 这些非最优形态通常包括共混膜中的许多缺陷位点(即尖锐的畴-畴界面和大的聚合物聚集体),限制了低 COS 下的机械强度和拉伸性。[17–19] 此外,聚合物共混物的相分离受 PD 和 PA 的聚集和结晶行为的影响。特别是,含有高度结晶、刚性 SMA 单元的 PSMA 通常具有非常强的结晶和聚集特性,导致强烈的相分离
NDA 多学科审查与评估 NDA 215,310 Mobocertinib(原名 TAK-788,AP32788) 第 7 页,共 286 页 表 22:合并既往铂类分析集和有或无既往抗 PD-(L)1 抗体的亚组的研究者评估的 cORR 和 DOR .............................................................................................................................137 表 23:重大方案偏差,主要疗效人群(FDA 表) .............................................................................................................................139 表 24:按亚组划分的客观缓解率(FDA 表) .............................................................................................144 表 25:多西他赛和 Mobocertinib 治疗结果总结 .............................................................................................147 表 26:携带 EGFR 外显子 20 插入突变的 NSCLC 患者使用 PD-(L)1 抑制剂和 Mobocertinib 治疗结果总结 ................................................................................................................................................................147 表 27:患者处置(所有分析人群;数据截止日期 2020 年 5 月 29 日)......................................................................................................152 表 28:患者研究药物暴露(所有分析人群;表 29:研究治疗时间和累积剂量(FDA 表) ......................................................................................................155 表 30:人口统计学特征(所有分析人群;数据截止日期 2020 年 5 月 29 日) .............................................................................................................156 表 31:基线特征(所有分析人群;数据截止日期 2020 年 5 月 29 日) .............................................................................................................157 表 32:研究中死亡情况总结(所有分析人群;数据截止日期 2020 年 5 月 29 日) .............................................................................................162 表 33:FDA 对合并安全性人群中与疾病进展不明确相关的治疗中出现的致命不良事件的因果关系评估(N=256)(FDA 表) ................................................................................................................................165 表 34:最常见(任何组中≥2% 的患者报告)按 SOC 和 PT 划分的治疗新出现的 SAE(所有分析人群;数据截止日期 2020 年 5 月 29 日).........................................................................................169 表 35:按 SOC 和 PT 划分的最常见(任何组内≥2% 的患者报告)治疗相关 SAE(所有分析人群;数据截止日期 2020 年 5 月 29 日).........................................................................................171 表 36:FDA 对导致主要安全人群 (n=114) 中停药的 TEAE 的分析(FDA 表).........................................................................173 表 37:FDA 对导致主要安全人群 (n=114) 中≥2% 的患者剂量中断和剂量减少的 TEAE 的分析(FDA 表)........................................................................................................................174 表 38:临床关注的 TEAE:搜索策略 ..............................................................175 表 39:临床关注的 TEAE – 总体、相关性、等级、严重性、停药(按安全性人群;数据截止日期 2020 年 5 月 29 日) .176 表 40:3 个安全性人群中 QTc 延长或室性心律失常 TEAE 患者的 FDA 分析(FDA 表) ................................................................................183
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
抵抗[5]。尽管过程优化了重大的优化工作,但由PBF-LB和PBF-EB生产的316升零件仍然无法满足最佳功能性能所需的表面质量要求。据报道,由PBF-LB和PBF-EB产生的316L部分的典型表面粗糙度(RA)值分别为〜10 µm [9]和〜30 µM [10]。在PBF-LB和PBF-EB之间获得的表面粗糙度的巨大差异是无关的。在比较PBF-LB和PBF-EB时,已经报道了TI6AL4V的可比较表面粗糙度值。对于PBF-LB标本,在构建方向上测量了〜8 µm的RA,而对于PBF-EB,观察到RA为〜23 µm [11]。无论相关的AM过程如何,印刷的部分通常都需要后处理才能实现所需的表面
抽象背景微生物必须对其环境变化做出反应。分析函数的鲁棒性(即性能稳定性)这种动态扰动在实验室和工业环境中都引起了极大的兴趣。最近,一种能够评估各种功能的鲁棒性的定量方法,例如在不同条件,时间范围和种群中为在96孔板中生长的微型ISM开发了各种功能的鲁棒性。在微静电板中,环境变化缓慢且未定义。动态微型单细胞培养(DMSCC)实现了微环境的精确维护和操纵,同时使用活细胞成像随着时间的推移跟踪单细胞。在这里,我们将DMSCC和鲁棒性量化方法结合在一起,以评估在几秒钟或几分钟内发生变化的性能稳定性。结果,酿酒酵母CEN.PK113-7D,具有用于细胞内ATP水平的生物传感器,暴露于葡萄糖盛宴饥饿周期,每种状况在20小时内持续1.5至48分钟。开发并应用了半自动图像和数据分析管道,以评估种群,亚种群和单细胞分辨率的各种功能的性能和鲁棒性。我们观察到特定生长速率的降低,但振荡间隔更长的细胞内ATP水平增加。持续48分钟振荡的细胞表现出最高的平均ATP含量,但随着时间的流逝,稳定性最低,在人群中的异质性最高。结论所提出的管道使随着时间的时间和种群内的动态环境中的功能稳定性进行了研究。该策略允许并行化和自动化,并且很容易适应新的生物,生物传感器,培养条件和振荡频率。对微生物对不断变化环境的反应的见解将指导应变开发和生物处理优化。关键词酿酒酵母,种群异质性,动态环境,尺度降低,生物传感器,活细胞成像,微流体单细胞培养,营养振荡
