该文档计划于2025年3月13日在联邦公报上发布,并在https://federalregister.gov/d/2025-04066上在线获取,并在https://govinfo.gov
Private Health Insurance 440,375 38.50% 3,734,431 66.30% Public Health Insurance 638,968 55.87% 1,445,688 25.67% No Health Insurance 64,347 5.63% 452,194 8.03% TOTAL 1,143,690 100.00% 5,632,313 100.00%
已经开发了国际高级电视和红外观测卫星垂直声音(ATOVS)处理套件(IAPP),以检索来自ATOVS测量结果的大气温度,湿度,大气总臭氧,大气总臭氧和其他参数。检索这些参数的算法包含四个步骤:1)云检测和去除,2)ATOV测量值的偏置调整,3)回归检索过程,以及4)非线性迭代物理检索。九(3 3 3)相邻的高分辨率红外音器(HIRS)/3点观测,以及先进的微波炉响起的单位-A观测值重塑为HIRS/3分辨率,可用于检索温度效果,表面皮肤温度,总大气的冰酮和微层面表面和同样的湿度,表面皮肤温度,总大气的沸腾的表面,以及同样。atovs profle检索结果通过root平方平方的差异来评估反射仪观察条件。在1 km垂直分辨率下温度的检索准确性约为2.0 k,在本研究中,在2 km垂直分辨率下的露点温度为3.0–6.0 K。IAPP现在可供全球用户用于处理实时ATOV数据。
本摘要概述了机器学习模型在网络安全领域的有效性,并强调了可解释的AI在授权安全分析师中的重要性。随着网络威胁的复杂性和复杂性的日益增长,组织正在转向高级技术,例如机器学习,以增强其防御机制。但是,传统机器学习算法的黑盒性质阻碍了其在安全操作中的采用。本文通过为机器学习模型的决策过程提供可解释的见解,探讨了可解释的AI及其潜力解决此限制的概念。通过提高透明度和问责制,可以解释的AI为安全分析师提供必要的工具,以更好地理解,验证和信任这些模型的输出。通过研究当前的研究和行业实践,这项研究强调了可解释的AI在促进人类与机器学习算法之间有效合作的重要性,最终增强了网络安全工作。
在世界范围内,警察部门使用犯罪预测软件来预先预测并防止未来的罪行。预测性警务只是安全当局以及特殊的执法机构努力通过通过社会技术手段产生与未来相关的知识来使未来易于管理的众多方式之一。在进行预测性警务时,警察部门不仅会产生对未来的预期见解,而且会积极地塑造目前的介入。在本章中,我们将预测性警务分析为生产和塑造与犯罪相关的未来的社会技术过程。更确切地说,我们将预分法的警务分析为“翻译链”(Latour,1999:70)。这样做,我们追踪了犯罪预测的产生,从算法编程和数据输入到警察执行的数据:涉及许多认知翻译的过程 - 在不同的位置,但通常会及时接近。我们将预测性警务描述为一个由不同阶段组成的增量过程,专门针对基于德国的基于地方的犯罪预测软件。将这一过程作为“翻译链”,我们显示了一个较大的(认知)差距,该差距在预测过程的开始及其结束之间出现。在一个或多或少的无缝过程中,这一差距是由人类和非人类填补的,从相应警察总部的犯罪分析部门开始,并在预测的风险区域的街道上结束。我们收集了从11个警察部门,其中4个位于瑞士和7个在德国的定性数据。将预测性警务视为一系列翻译,使我们能够将其分析为一种富有成效的社会技术过程,该过程有时会以非线性方式进行。本章借鉴了一个有关我们在2017年至2018年间在德国和瑞士进行的犯罪预测软件实施和使用的研究项目。在数据收集时,所有部门都已经定期使用预测性警务工具,运行现场实验以确定是否使用和/或如何最好地实施此类工具,或者开发自己的工具。总共对警察主持人进行了62次半结构化访谈。这些官员从事各种角色,包括后台工作,
摘要 - 移动性-AS-A-Service(MAAS)整合了不同的运输方式,并可以基于个人的偏爱,行为和愿望来支持旅行者的旅程计划的更多个性化。为了充分发挥MAA的潜力,需要一系列AI(包括机器学习和数据挖掘)算法来学习个人需求和需求,以优化每个旅行者和所有旅行者的旅程计划,以帮助运输服务运营商和相关的政府机构,以操纵和计划其服务,并探讨和预防各种威胁性的旅行者,包括各种不和谐的行星和不去行业者和不去行业者和不去行业者和不相行者和不去行业者和不相行者。在集中式和分布式设置中,对不同的AI和数据处理算法的使用越来越多,使MAAS生态系统在AI算法级别和连接性表面上都可以在不同的网络和隐私攻击中发出不同的网络和隐私攻击。在本文中,我们介绍了有关AI驱动的MAAS设计与与网络攻击和对策相关的各种网络安全挑战之间的耦合的第一个全面综述。特别是,我们专注于当前和出现的AI易于侵略的隐私风险(专业,推理和第三方威胁)以及对抗性AI攻击(逃避,提取和游戏)可能会影响MAAS生态系统。这些风险通常将新颖的攻击(例如,逆学习)与传统攻击媒介(例如,中间攻击)结合在一起,加剧了更广泛的参与参与者的风险和新业务模型的出现。
世纪,以富裕和营养食品的养育人群喂养不断增长的人群。除了主要农作物 - 大米,小麦和玉米 - 探索具有更多营养价值的孤儿/天然作物很重要(Chaturvedi等,2022; Chaturvedi等,2023)。生物应激源,包括真菌,细菌,线虫,昆虫和病毒;以及由于气候变化而加剧了土壤中的干旱,热,冷,盐度,流量和养分含量等非生物限制条件(Ghatak等,2017; Chaturvedi等,2021)。开发和利用多种弹性作物对于在所有环境限制下确保粮食安全至关重要。在环境限制下增加高产农作物,这是由于选择中的角色的遗传力较低而令人生畏。确定更多的重要特征可以赋予各种压力的宽容,这是科学家和育种者的主要目标(Roychowdhury等,2020)。因此,我们的研究主题“表征和改善了弹性作物发展的特征”,包括14种手稿,可为作物遗传资源,定量特质基因座(QTL)映射(基因组全基因组关联研究(GWAS),单倍型分析,多摩学分析,多摩学分析,基因发现,表达发现,高级遗传学特征化工具)提供新的见解。植物疾病每年在主要农作物中造成约30%的收益率损失(Gangurde等人)。在当前的气候情况下,许多疾病正在出现,在未来几十年中,农作物的可持续性恶化了(Chakraborty等,2014)。)。gwas已被用来有效发现与多种作物抗病的抗性相关的QTL(Gangurde等人Gangurde等。在过去的二十年中汇编并强调了成功的GWAS研究。他们的研究主要集中于提高通过
摘要:遗传算法(GA)比其他方法(例如梯度下降或随机搜索)更有用,尤其是对于具有许多局部最小值和Maxima的非不同的函数,例如梯度下降或随机搜索。标准GA方法的缺点之一是需要设置许多超参数,并且基于复杂规则而不是更直观的模糊规则,选择压力是基于复杂的规则。通过模糊逻辑调整此类参数的遗传算法的变体,以使参数更新原理更容易解释,构成模糊遗传算法(FGAS)的类别。本文提出了对具有N个特性和自动生成规则的两个相对模糊遗传算法(FGA)的修改,以及旨在改善模拟运行时的计算优化。在基准功能(Ackley,Griewank,Rastrigin和Schwefel)上评估了修改,并且选择了每个修改方法的最佳设置(即成员资格功能,术语数,T-norm和t-conorm)。将结果与标准GA和粒子群优化(PSO)进行了比较。结果表明,FGA方法可以使用缓存和最近的邻居方法进行优化,而不会失去准确性和收敛性。证明这两种修改后的方法在统计学上的表现明显比基线方法差。结果,我们提出了对现有两种算法的两种优化:通过缓存和测试其性能,通过规则生成和最近的邻居估算进行外推。