在这项工作中,我们提出了一种新颖的歧视性框架,用于灵巧的掌握生成,称为d外部g rasp tr ansformer(dgtr),能够通过仅使用一个向前的通行方式处理对象点云来预测一组可行的抓握姿势。我们将敏捷的掌握生成作为设定的预测任务,并为其设计一个基于变压器的握把模型。但是,我们确定此设置的预测范式在灵活的掌握领域遇到了几种优化的挑战,并导致限制性能。为了解决这些问题,我们提出了培训和测试阶段的渐进策略。首先,提出了动态静态匹配训练(DSMT)策略,以增强训练阶段的光学稳定性。第二,我们使用一对对抗性损失来实现对抗平衡的测试时间适应(ABTTA),以提高测试阶段的掌握质量。dexgraspnet数据集的实验结果证明了DGTR可以预测具有高质量和多样性的灵活掌握姿势的能力。值得注意的是,在保持质量高的同时,DGTR Sigsigs所预测的Grasp的多样性明显优于先前的多个指标,而没有任何数据预处理。代码可在https://github.com/isee-laboratory/dgtr上找到。
➢j和l是损失 /错误 /成本功能的通常符号,即< / div>模型预测的内容与根据地面真理预测的内容之间的区别。
LIDAR UPSMPLING对于机器人和自动驾驶汽车的启示系统来说是一项艰巨的任务,这是由于大型场景的稀疏结构稀疏和不规则的结构。最近的作品建议通过将LIDAR数据从3D欧几里得空间传播到2D图像空间中的一个超级分辨率问题来解决此问题。尽管他们的方法可以生成具有细粒细节的高分辨率范围图像,但由此产生的3D点云是10个模糊细节并预测无效的点。在此pa-per中,我们提出了郁金香,这是一种从低分辨率激光雷达输入中重建高分辨率激光圈云的新方法。我们还遵循一种基于图像的方法,但特定地修改了基于Swin-Transformer网络的贴片和窗口几何形状,以更好地拟合范围图像的特性。我们在三个公共现实世界和模拟数据集上进行了几项实验。郁金香在所有相关指标中都优于最先进的方法,并且比以前的工作生成了强大,更现实的点云。该代码可在https://github.com/ethz-asl/tulip.git上找到。
仿射配准在全面的医学图像配准流程中不可或缺。然而,只有少数研究关注快速而鲁棒的仿射配准算法。这些研究中大多数利用卷积神经网络(CNN)来学习联合仿射和非参数配准,而对仿射子网络的独立性能探索较少。此外,现有的基于 CNN 的仿射配准方法要么关注局部错位,要么关注输入的全局方向和位置来预测仿射变换矩阵,这些方法对空间初始化很敏感,并且除了训练数据集之外表现出有限的通用性。在本文中,我们提出了一种快速而鲁棒的基于学习的算法,即粗到精视觉变换器(C2FViT),用于 3D 仿射医学图像配准。我们的方法自然地利用了卷积视觉变换器的全局连通性和局部性以及多分辨率策略来学习全局仿射配准。我们对 3D 脑图谱配准和模板匹配归一化方法进行了评估。综合结果表明,我们的方法在配准精度、稳健性和通用性方面优于现有的基于 CNN 的仿射配准方法,同时保留了基于学习的方法的运行时优势。源代码可在 https://github.com/cwmok/C2FViT 上找到。
• The Realities of the Energy Transition • The Role for Hydrogen in the Energy Transition • The Role of Renewables and Other Energy Sources • The Future Markets for Petrochemicals and Refineries of the Future • Circular Economy - Consumerism & Industry Responses • Emission Reduction - Carbon Dioxide Utilisation (CCUS) • Driving Innovation in a Net Zero World: Key Challenges in R&D • Digital Transformation on the Route to Net Zero • Dialogue on the Energy Future • Dialogue on Energy Security • Alleviating Energy Poverty – Industry Responses for Providing Access to Energy • Access to Capital and Innovative Business Models • Raising Finance during the Energy Transformation – an Investor-Industry Dialogue • Climate Solutions from the Oil and Gas Industry • Untapped Reserves – Driving Diversity in Oil and Gas • Diversity and Inclusion – Focus on Indigenous People • WPC Youth Session - Securing the Next Generation for our Industry • Social责任 - 赢得经营许可
与第一个报价有关的风险这是我们公司的第一个公开报价,股票股票没有正式市场。股票股票的面值分别为5卢比。根据我们公司与BRLMS协商确定的平价,价格和要约价格,根据账面建设过程对公平股份的市场需求进行评估,并按照SEBI ICDR法规在第107页的“基础上”中所述,不应被认为是公平股票均等的公平股份,不应被认为是公平股票的列表。对于股票股票的积极或持续交易,也无法就股票股票在上市后交易的价格提供任何保证。
安全理事会 1992 年 10 月 6 日第 780 (1992) 号决议要求我设立一个专家委员会,负责审查和分析所收集的信息,以便向秘书长提供关于前南斯拉夫境内严重违反日内瓦四公约和其他违反国际人道主义法行为的证据的结论。1992 年 10 月 26 日,我任命了一个由五名成员组成的委员会,由弗里茨·卡尔斯霍芬教授担任主席,后者辞职后,由切里夫·巴西奥尼教授担任主席。我关于设立专家委员会的报告于 1992 年 10 月 14 日提交安理会 (S/24657)。委员会于 1992 年 11 月开始活动,并于 1994 年 4 月结束工作。在此期间,委员会举行了 12 届会议,并进行了一系列研究和现场调查,为此目的利用了各国政府和非政府组织提供的援助。委员会还建立了一个数据库,旨在全面记录所有已报告的严重违反日内瓦公约和其他违反国际人道主义法的行为。委员会的两份临时报告描述了其工作状况和初步结论,已在我 1993 年 2 月 9 日(S/25274)和 1993 年 10 月 5 日(S/26545)的信中转交给安全理事会。委员会的最后报告包括对委员会自成立以来的工作、任务、结构和工作方法的调查、对前南斯拉夫背景下特别重要的某些法律问题的看法、对“交战派别”军事结构及其所采用的战略和战术的一般性研究,以及对波斯尼亚和黑塞哥维那各地犯下的所谓“种族清洗”、种族灭绝和其他大规模违反基本人道规定的罪行、强奸和性侵犯以及破坏文化财产等罪行的实质性调查结果。
武装部队部长将于 2024 年 5 月 16 日星期四访问卢维埃国家宪兵旅,与 2024 年 5 月 14 日星期二早上在因卡维尔收费站致命伏击现场率先进行干预的官员和操作员交谈,以表示对安全和救援部队的支持。
摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
