摘要:认知健康的声音偏差称为轻度认知障碍(MCI),尽早监测它以防止痴呆症,阿尔茨海默氏病(AD)和帕金森氏病(PD)等复杂疾病。传统上,使用蒙特利尔认知评估(MOCA)对MCI严重性进行了手动评分来监测。在这项研究中,我们提出了一种新的MCI严重性监测算法,并通过自动产生与MOCA评分等效的严重程度得分来回归分析单通道电 - 摄影(EEG)数据的提取特征。我们评估了用于算法开发的多试验和单轨分析。进行多试验分析,从与突出的事件相关电位(ERP)点和相应的时域特征中提取了590个特征,我们利用Lasso回归技术选择了最佳功能集。经典回归技术中使用了13个最佳特征:多元回归(MR),集合回归(ER),支持向量回归(SVR)和Ridge回归(RR)。对ER的最佳结果是1.6的RMSE和剩余分析。在单审分析中,我们从每个试验中提取了一个时间 - 频图图像,并将其作为对构建的卷积深神经网络(CNN)的输入。这种深CNN模型的RMSE为2.76。据我们所知,这是从单渠道脑电图数据中使用多试和单个数据生成与MOCA相当于MOCA的MCI严重程度的自动分数。
图1均方根误差(RMSE),调整后的R 2,并对使用相同参数和最大B值计算的Sandi模型的每个参数进行了截取,但壳数量不同,但壳数量不同:从与我们的协议相对应的6个。这三个曲线表示球形平均值的不同信噪比(SNR)预先形成的模拟:SNR = 50的圆形标记,SNR = 100的星号标记物以及在没有噪声的情况下正方形(即SNR相等的无限)。扩散率以μm2 /ms的含量为单位,在μm中的RSOMA报告。
灵感呼吸技术(DIBH)在减少左侧BC患者的平均心脏剂量(MHD)方面变得越来越普遍。但是,RT的治疗计划和DIBH艰辛,耗时且昂贵,对于患者和RT员工来说。 此外,亚洲妇女中MHD左BC患者的比例要高得多,这主要是由于与西方国家相比,其乳房量较小。 本研究旨在确定用于预测RT后MHD的最佳机器学习模型(ML)模型,以预先选择低MHD患者,在RT计划之前不需要DIBH。 总共将接受术后RT的562例BC患者随机分为TrainVal(n = 449),外部(n = 113)测试数据集使用Python(版本3.8)。 使用高斯噪声的合成少数民族过采样校正了不平衡的数据。 具体来说,右左,肿瘤部位,胸壁厚度,辐照方法,体重指数和分离是用于ML的六个解释变量,并使用了四种监督的ML算法。 使用使用均方根误差(RMSE)的高参数调谐的最佳值作为内部测试数据的指标,使用外部测试数据选择了最终的F2得分评估的模型。 RT后MHD对真实MHD的预测能力是深神经网络的所有算法中最高的,RMSE为77.4,F2得分为0.80,曲线接收器操作特性下的面积为0.88,cgy cgy cgy的cgy值为0.88。但是,RT的治疗计划和DIBH艰辛,耗时且昂贵,对于患者和RT员工来说。此外,亚洲妇女中MHD左BC患者的比例要高得多,这主要是由于与西方国家相比,其乳房量较小。本研究旨在确定用于预测RT后MHD的最佳机器学习模型(ML)模型,以预先选择低MHD患者,在RT计划之前不需要DIBH。总共将接受术后RT的562例BC患者随机分为TrainVal(n = 449),外部(n = 113)测试数据集使用Python(版本3.8)。使用高斯噪声的合成少数民族过采样校正了不平衡的数据。具体来说,右左,肿瘤部位,胸壁厚度,辐照方法,体重指数和分离是用于ML的六个解释变量,并使用了四种监督的ML算法。使用使用均方根误差(RMSE)的高参数调谐的最佳值作为内部测试数据的指标,使用外部测试数据选择了最终的F2得分评估的模型。RT后MHD对真实MHD的预测能力是深神经网络的所有算法中最高的,RMSE为77.4,F2得分为0.80,曲线接收器操作特性下的面积为0.88,cgy cgy cgy的cgy值为0.88。
摘要。干旱是一场毁灭性的自然灾害,在此期间,水短缺通常体现在植被的健康中。不幸的是,在空间和时间上获得高分辨率的植被影响信息很难。虽然远程感知的产品可以提供此信息的一部分,但它们通常会根据其空间或时间分辨率的数据差距和限制。远程感应产品之间的一个持续特征是空间分辨和重访时间之间的权衡:高时空分辨率与粗空分辨率达到了高度分辨率,反之亦然。机器学习方法已成功应用于广泛的遥感和水文研究。然而,仍然需要提供解决对植被的干旱影响的全球应用程序,因为这种产品有显着的潜力可以帮助改善干旱影响监测。为此,这项研究预测了基于增强的植被内部(EVI)和流行的随机森林(RF)回归体的全球植被动态。我们评估了RF作为间隙填充和缩减工具的适用性,以生成在空间和时间上一致的全局EVI估计值。为此,我们使用了许多特征,指示了植被经验丰富的水和能量平衡,并评估了该新产品的性能。结果表明,RF可以以0.1°分辨率(RMSE:0.02-0.4)和0.01°分辨率(RMSE:0.04-0.6)捕获全局EVI动力学。接下来,为了测试RF在空间分辨率方面是否稳健,我们降低了全局EVI:在0.1°数据上训练的模型用于以0.01°的重置预测EVI。总体误差更高。尽管如此,相对增加仍然是
摘要 —本文提出了一种创新的室内家居产品数字化设计方法,将虚拟现实(VR)技术与智能算法相结合,以提高设计精度和效率。提出了一种结合红鹿优化算法和简单循环单元(SRU)网络的模型来评估和优化设计过程。本研究开发了一个包含关键评估因素的数字设计框架,通过红鹿优化算法优化SRU网络,以在设计应用中实现更高的精度。通过大量实验,使用平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)等指标验证了模型的性能。结果表明,RDA-SRU模型优于其他方法,最小MAE为0.133,RMSE为0.02,MAPE为0.015。此外,该模型的 R² 值达到 0.968,最短评估时间为 0.028 秒,展示了其在预测和评估家居产品数字设计应用方面的卓越性能。这些发现表明,VR 与智能算法的结合显著提高了用户体验、可定制性和数字设计流程的整体准确性。这种方法为设计师提供了一个强大的解决方案,可以创建更高效、以用户为中心的家居产品设计,满足客户对沉浸式和交互式设计体验日益增长的需求。
摘要:心率作为生理健康状况最显著的指标之一,成为研究者们必研究的对象。与许多现有方法不同,本文提出了一种在时间序列缺失模式下从心电图中实现短时心率估计的方法。得益于深度学习的快速发展,我们采用双向长短期记忆模型 (Bi-LSTM) 和时间卷积网络 (TCN) 从持续时间小于一个心动周期的心跳信号中恢复完整的心跳信号,并从恢复的片段中结合输入和预测输出估计心率。我们还比较了 Bi-LSTM 和 TCN 在 PhysioNet 数据集上的性能。通过在没有明显心律失常的数据库中的静息心率范围 60–120 bpm 和有心律失常的数据库中的相应范围 30–150 bpm 上验证该方法,我们发现网络为固定格式的不完整信号提供了一种估计方法。这些结果与正常心跳数据集 (γ > 0.7, RMSE < 10) 和心律失常数据库 (γ > 0.6, RMSE < 30) 中的真实心跳一致,验证了可以通过模型提前估计心率。我们还讨论了预测模型的短期限制。它可以用于生理目的,例如时间受限场景中的移动感应,并为缺失数据模式中更好的时间序列分析提供有用的见解。
摘要:本文研究了新型机器人控制器的尖峰神经网络(SNN),目的是提高轨迹跟踪的准确性。通过结合时间编码机制来模拟人脑的运行,SNN在信息处理方面提供了更大的适应性和效率,与常规神经网络相比,机器人手臂控制中时间信息的代表方面具有显着优势。探索机器人控制中SNN的特定实现,本研究分析了SNN固有的神经元模型和学习机制。基于神经工程框架(NEF)的原理,使用NENGO和MATLAB R2022B设计了一个新型的尖峰PID控制器,并为3多型机器人臂设计和模拟。控制器在以下指定的轨迹方面表现出良好的准确性和效率,显示出最小的偏差,过冲或振荡。使用均方根误差(RMSE)等性能指标的彻底定量评估以及时间加权误差(ITAE)的绝对值的积分,为基于SNN的控制器的效率提供了其他验证。观察到竞争性能,就ITAE指数而言,ITAE指数的ITAE指数和常规PID控制器的模糊控制器超过了模糊控制器,而ITAE指数则超过了6%,而RMSE的性能则超过了30%。这项工作强调了NEF和SNN在开发有效的机器人控制器方面的实用性,为未来的研究奠定了基础,该研究的重点是动态环境和先进的机器人应用中的SNN适应性。
摘要肌萎缩性侧索硬化症(ALS)的特征是一种快速进行性神经退行性疾病,在医疗干预和疗法领域中提供了有限的治疗选择的人。该疾病展示了各种各样的发作模式和进展轨迹,强调了早期检测功能下降的关键重要性,以实现定制的护理策略和及时的治疗干预措施。由IDPP@CLEF 2024挑战率负责的本研究重点是利用通过应用程序获得的传感器来源数据。此数据用于构建各种机器学习模型,专门设计,以预测ALS功能评级量表重新介绍(ALSFRS-R)分数的进步,利用组织者提供的数据集。在我们的分析中,评估了多个预测模型,以确定其在处理ALS传感器数据方面的疗效。使用统计方法将传感器数据的时间方面压缩并合并,从而增强了收集信息的可解释性和适用性,以实现预测性建模目标。表现出最佳性能的模型是天真的基线和弹性网络回归。幼稚的模型达到的平均绝对误差(MAE)为0.20,均方根误差(RMSE)为0.49,表现略高于ElasticNet模型,该模型的MAE为0.22,RMSE为0.50。我们的比较分析表明,虽然天真的方法提高了更好的预测精度,但ElasticNet模型为理解特征贡献提供了强大的框架。
摘要 - 传统的推荐系统遭受概念漂移的困扰 - 一种假定用户偏好随着时间而言是静态的现象。为了解决此问题,需要使用推荐算法来考虑用户偏好的时间敏感变化并提供相关建议。这项研究工作提出了一个基于合奏的混合推荐系统,该系统结合了用户兴趣的时间变化。提出的系统结合了不同的算法,例如受欢迎程度,聚类,协作矩阵分解和奇异价值分解(SVD)。然后,使用人工神经网络(ANN)将从这些单个模型获得的电影建议合并并分类。用户对提出的建议的反馈,这有助于计算每批建议的相关因素。最后,向用户提供了相关的电影建议。在相关因素较低的情况下,建议将重新分类。提议的系统的目的是根据用户的时间敏感偏好为用户提供各种建议。提出的研究的新颖性是整合了普遍的建议策略以及用户反馈机制在提出的建议中的结合。所提出的系统是在标准电影数据集Movielens-25m上实现的,并使用RMSE和MAE等统计性能指标进行评估。这项工作说明了建议质量的提高以及对改变用户偏好的适应性。实验表明,将人工神经网络作为集合混合建议模型的分类器的整合在提供0.56和0.43作为RMSE和MAE值的相关建议方面表明了有希望的结果。
摘要:本研究旨在开发一种新方法,利用采伐机在作业伐木过程中记录的树干信息,基于遥感预测成熟林分的森林资源清查属性。参考样地由采伐机数据形成,使用两种不同的树木位置:全球卫星导航系统中的采伐机位置(XY H )和计算改进的采伐机头位置(XY HH )。研究材料包括位于芬兰南部的 158 个以挪威云杉为主的成熟林分,这些林分在 2015-16 年期间被砍伐。树木属性来自采伐机记录的树干尺寸。森林资源清查属性是为林分和为四种不同样地大小(254、509、761 和 1018 平方米)的林分生成的样地汇编而成的。建立了基于采伐机的森林资源清查属性与样地遥感特征之间的预测模型。获得了林分水平的预测结果,基部面积加权平均直径 (D g ) 和基部面积加权平均高度 (H g ) 对于所有模型替代方案几乎保持不变,相对均方根误差 (RMSE) 分别约为 10-11% 和 6-8%,偏差较小。对于基部面积 (G) 和体积 (V),使用任何一种位置方法,最多只能得到大致相似的预测结果,相对 RMSE 约为 25%,偏差为 15%。对于 XY HH 位置,G 和 V 的预测几乎与 sa 无关
