在啮齿动物大脑中,不同细胞类型的分子表征是神经科学中广泛使用且重要的方法。使用rnascope(ACDBIO)对转录本的荧光检测已迅速成为原位杂交(ISH)方法的标准。它的灵敏度和特异性允许单个细胞中的三个和48个低丰度mRNA(即多路复用或hiplexing)同时检测,与其他ISH技术相比,它的执行时间较短。笔录的手动量化是一项费力且耗时的任务,即使对于较大的组织部分的一小部分也是如此。在此,我们提出了一种用于创建高质量图像的协议,以定量大鼠大脑中的rnascope标记神经元。此协议使用开源软件Qupath中的自定义脚本来创建自动化工作流程,以仔细优化和验证单元格检测参数。此外,我们描述了一种使用阴性对照来得出mRNA信号阈值的方法。该方案和自动化工作流可以帮助科学家可靠地准备和分析使用RNASCOPE的细胞类型表征啮齿动物脑组织。
审查委员会的科学成员指出的一个主要批评,似乎是驾驶得分,围绕怀疑主义,临床前数据由于中枢神经系统内传输的细胞数量有限,因此临床前数据对患者有所帮助。例如,针对解决基本原理的标准,响应包括:“小鼠,大鼠和NHP的矢量生物分布表明,10,000中的1个中的1000元中有100个单元中的1个中的1个可能会表达矫正的转基因。so,将未校正99%至99.99%的中枢神经系统神经元。”该结论是基于量化rnascope数据的图(原位杂交以可视化表达的转基因mRNA),其中定量指标为“%正面”,而不是根据Y轴标签正确解释这些数据为“%正区域”,而是错误地将数据解释为转导的细胞的百分比。在组织切片中RNA的原位染色(RNASCOPOPOPO)似乎是细胞内定位的点状焦点,并且不填充细胞体积,因此即使总细胞的很大一部分总细胞表达了转基因,“%阳性面积”的原始定量始终是一个较低的数量。此RNASCOPE数据旨在确认转基因的表达,并提供转导空间分布的一般定性可视化,不应用作转导的细胞数量的度量。从大鼠和NHP提供的生物分布数据显示约10%的接收矢量DNA的细胞是对靶向细胞数量的更准确和定量的度量。CIRM应用中的所有临床前数据都从我们的同行评审出版物中获取(Chen X等,JCI,2023)。我的总体意义是,对临床前数据的这种误解使审稿人对整个计划的看法蒙蔽了致命的缺陷,从而导致了低分和拒绝的决定。如果对临床前数据的正确理解对应用程序进行了审查,我相信可以给予该程序的强大优点,从而更加考虑,从而导致不同的审查结果。
a)用BI 3706674作为单药或与Cetuximab在指定的给药方案下处理BI 3706674后,肿瘤体积的变化百分比变化为5个代表性CRC KRAS G12V突变的PDX模型。小鼠进行口服治疗。b)具有BI 3706674单药和西妥昔单抗组合治疗的CRC PDX的肿瘤生长抑制(TGI%)的概述。c&d)RNASCOPE分析,显示了DUSP6下调和H&E图像,分别显示了治疗端点处C1035和C1142肿瘤的肿瘤面积减少。
在cynomolgus monkeys中静脉内给药Vy9323导致颈脊髓和腰椎脊髓中的大量载体基因组递送(A,B),并在颈椎和腰椎脊髓腹侧角组织(C,D)和Laser捕获的电动机(C,D)和Laser Captured captured的SOD1 mRNA减少。vy9323可大大降低颈脊髓中的SOD1 mRNA。黑色箭头代表表达许多SOD1 mRNA副本的细胞,红色箭头指示表达更少副本的细胞。在输送标记有效载荷和VY9323 CAPSID后,自动检测运动神经元转导,确定了85-94%的神经元在宫颈,胸腔和腰椎转导85-94%。
摘要:近年来,成年人类齿状回(DG)的神经源性潜力已广泛争论。本研究旨在提供有关人脑在转录组水平上人脑中成年海马神经发生(AHN)程度的新见解。使用10倍基因组学的空间基因表达平台在年轻(n = 2,平均年龄= 23.5岁)和中年神经型雄性(n = 2,平均年龄= 42.5岁)和中年神经型雄性(n = 2,平均年龄= 23.5岁)上使用10倍的空间基因表达平台(douglas-bell Canada Brain Bank),我们计算了各种Neurosis Markers of neurogens of neurogens of the dgers of neurogens of the d d d dgers n d d d d dgers n = 2。我们还评估了来自婴儿(n = 1,年龄= 2岁),青少年(n = 1,年龄= 16岁)和使用中等年龄的男性(n = 6,n = 6,n = 43.5岁的年龄)的DG细胞(n = 1岁)的DG细胞中特异性的标志物(NSC),增殖细胞和未成熟颗粒神经元的增生细胞和未成熟的颗粒神经元(n = 1,年龄= 2岁)杂交(RNASCOPE; ACD BIO)。我们的森林数据表明,神经发生标志物可以映射到DG的DG细胞和区域DG,DG,Hampocampal神经源性壁iche外部(SGZ)以外的区域,证实了使用多个标记物表征人类海马中不同神经源细胞类型的重要性。例如,我们观察到NSC特异性标记NES在空间上解析为DG中的细胞和富含少突胶质细胞前体细胞特异性标记的区域。我们还发现,增殖标记PCNA和MCM2非常低表达,未成熟的神经元标记DCX在DG中显示了分散的表达。我们还鉴定了成人DG中的Prox1 + DCX + CalB2 +未成熟的颗粒神经元。使用rnascope,我们发现很少有表达NSC特异性标记和增殖细胞的细胞,但从童年到中年发现了SGZ中SGZ中表达DCX的平均表达细胞的稳定。在各个时代,大多数DCX + DG细胞表示抑制性神经元标记GAD1,而其余的则显示出兴奋性表型(SLC17A7 +)或不承诺。此外,在表达神经胶质标记物(例如TMEM119和ALDH1L1)的细胞中检测到DCX表达,虽然很少,却在非神经发生的脑区域中。我们的发现表明,由于缺乏NSC和来自儿童时期的增殖标记的表达,人脑的AHN水平非常低。
反复接触过敏原触发的夸大气道收缩,也称为过度反应性,是哮喘的标志。已知迷走性感觉神经元在过敏原诱导的高反应性1-3中起作用,而下游淋巴结的身份仍然鲜为人知。在这里,我们绘制了从肺部到脑干并回到肺部的完整过敏原回路。反复暴露于吸入过敏原的小鼠以肥大细胞,白介素4(IL-4)和迷走神经依赖性方式激活了单生物(NTS)神经元的核。单核RNA测序,然后在基线和过敏原挑战处进行RNASCOPE分析,表明DBH + NTS种群优先激活。DBH + NTS神经元的消融或化学发生失活降低了过度反应性,而化学遗传激活则促进了它。病毒跟踪表明DBH + NTS神经元会向歧义核(NA)发射,并且NA神经元是必需的,足以将过敏原信号传递到直接驱动气道狭窄的范围内神经元。将去甲肾上腺素拮抗剂递送到Na钝的高反应性中,表明去甲肾上腺素是DBH + NTS和Na之间的发射机。一起,这些发现提供了规范过敏原反应电路的关键节点的分子,解剖和功能定义。此知识介绍了如何使用神经调节来控制过敏原诱导的气道高反应性。
peña实验室普林斯顿神经科学研究所凯特·詹森·佩尼亚(Cate JensenPeña),pi www.penalab.org研究专家I(技术人员)工作,开设此职位将于2024年1月开始或填补。我们的研究:我们的实验室主要研究脑发育的分子机制以及整个生命周期的压力的影响。我们使用早期和成人压力的小鼠模型,以研究控制压力过敏的神经生物学机制。职位:该职位将合作以支持实验室中的许多项目。我们专门寻找成为组织学技术专家(通过鱼或IHC进行的组织切片,RNA或蛋白质染色),共聚焦显微镜和定量。这是一个为期一年的任期职位,其可能性可能取决于成功的绩效。薪水将由经验确定。您:申请人应该/很快就会完成学士学位或同等学历,非常有条理,对细节有很高的关注,与他人合作,能够在训练后能够独立地独立工作,在必要时提出问题,并有兴趣了解大脑。将偏爱具有组织切片,免疫组织化学,原位杂交(FISH,HRC,RNASCOPE)和/或共共聚焦显微镜的候选人。学习的热情是必不可少的,具体的先前实验室经验不是。womxn和历史上排除的群体的人们被专门申请。即将发布的正式职位发布,将在www.princeton.edu/acad-positions上找到。同时,有兴趣的候选人应与Princeton.edu的CPENA联系,并提供简短的求职信,说明经验和专业兴趣和简历。申请的审查将持续到该职位填补为止。该职位遵守大学的背景调查政策。
抽象的高度敏感的原位杂交程序(RNASCOPE)用于量化两种歌曲控制核(HVC和基底神经节的X区域X)中三种多巴胺受体(DRD1,DRD2和DRD3)的表达,已知这些核的表达已知,这些核的表达是众所周知,这些核的表达是接受多巴胺剂输入的男性和女性的灰色和PeriaqueDuctal and Peria cag and Peria cag and pag and pag and pag and pag)。两性都用睾丸激素治疗,以确保他们会积极唱歌。我们还确定了表达这些受体的细胞的兴奋性与抑制表型,以及它们在一段时间产生歌曲后的激活。在每个大脑区域中都鉴定了三种受体类型,但X区域drd3除外。表达每个受体的细胞密度随受到受体类型和脑面积的函数而变化。令人惊讶的是,很少发现性别差异;他们似乎无法解释睾丸激素引起的歌曲的性别差异。总体而言,PAG中DRD阳性细胞的密度比两个歌曲控制核低得多。在HVC中,大多数表达三种受体亚型的细胞均为vglut2阳性,而与vglut2的共定位发生在X区域的几个细胞中,并且PAG中的细胞中等比例。表达多巴胺受体的抑制细胞的数量受到限制。X区域中的大多数多巴胺感染细胞都没有表达兴奋性或抑制标记。最后,在表达三种多巴胺受体亚型中每一个的细胞中观察到了通过EGR1表达测量的唱歌过程中的细胞激活,除了PAG中的DRD3。
sidekick-1(SDK1)是前额叶皮层(PFC)功能的新型调节剂。SDK1是免疫球蛋白超家族(IGSF)的一部分,它们是在神经元突触中发现的一组细胞表面蛋白,它们在发育中具有重要作用[1]。研究表明,SDK1基因可能参与调节压力和抑郁症的易感性和韧性的神经回路[2,3]。但是,SDK1在可以调节应力反应的脑电路方面的确切作用尚不清楚。在这里,我们表征了SDK1在促进PFC压力的韧性中的作用。我们使用qPCR量化了各个大脑区域中的SDK1表达,并表明它在PFC中高度表达。此外,要研究不同大脑区域的男性和雌性小鼠慢性社交失败压力后SDK1表达的变化,在PFC上进行了原位杂交,然后使用共斑荧光显微镜进行成像。进行图像分析以量化谷氨酸能和GABA能细胞中SDK1的RNA表达,并发现在应激弹性动物的PFC中发现SDK1 mRNA表达增加。因此,我们假设它可能在PFC函数中起作用,例如行为适应不断变化的环境。我们使用概率逆转学习任务来检查PFC中SDK1过表达的行为效应,以观察特定的细胞类型和性别特异性差异。我们的发现显示在应激势力小鼠的PFC中SDK1的表达升高,这表明其在减轻压力对神经回路的影响中的作用。
Tran,K.B。 1,2,3和Shepherd,P.R。 1,2,3 1 Auckland Cancer Society Research Centre, University of Auckland, New Zealand 2 Department of Molecular Medicine and Pathology, University of Auckland, New Zealand 3 Maurice Wilkins Centre, University of Auckland, New Zealand BRAF inhibitors such as vemurafenib (VEM) are only effective as single agent mealnoma therapy in BRAF-mutant melanomas and resistance to the treatment develops within 6 to 12月份。 我们研究了靶向VEGF受体是否可以提高BRAF抑制疗法的功效。 我们从独特的NZM黑色素瘤细胞系中测量了VEGF-A分泌水平。 通过外显子组测序,RNASEQ和Western blotting分析了这些细胞中VEGF途径的变化。 异种移植物和同步模型用于研究VEM和VEGFR2抑制剂Axitinib(AXI)在体内的功效和安全性。 进行物种特异性肿瘤RNA测序,以识别受肿瘤细胞和宿主基质中药物组合影响的唯一影响的途径。 rnascope和免疫组织化学用于进一步分析药物在肿瘤中的作用。 v600E突变药物黑色素瘤细胞系分泌的VEGF在与RAS突变或非BRAF/NONRAS系的线相比,分泌的VEGF水平明显更高。 VEM在V600E突变细胞系中下调VEGF分泌,而不是Ras突变或Nonbraf/NonRAS细胞系中的分泌。 我们发现VEM + AXI组合协同抑制了肿瘤的生长。 有趣的是,该组合还抑制了BRAF-WildType异种移植物和同步B16肿瘤的生长。Tran,K.B。1,2,3和Shepherd,P.R。1,2,3 1 Auckland Cancer Society Research Centre, University of Auckland, New Zealand 2 Department of Molecular Medicine and Pathology, University of Auckland, New Zealand 3 Maurice Wilkins Centre, University of Auckland, New Zealand BRAF inhibitors such as vemurafenib (VEM) are only effective as single agent mealnoma therapy in BRAF-mutant melanomas and resistance to the treatment develops within 6 to 12月份。我们研究了靶向VEGF受体是否可以提高BRAF抑制疗法的功效。我们从独特的NZM黑色素瘤细胞系中测量了VEGF-A分泌水平。通过外显子组测序,RNASEQ和Western blotting分析了这些细胞中VEGF途径的变化。异种移植物和同步模型用于研究VEM和VEGFR2抑制剂Axitinib(AXI)在体内的功效和安全性。物种特异性肿瘤RNA测序,以识别受肿瘤细胞和宿主基质中药物组合影响的唯一影响的途径。rnascope和免疫组织化学用于进一步分析药物在肿瘤中的作用。v600E突变药物黑色素瘤细胞系分泌的VEGF在与RAS突变或非BRAF/NONRAS系的线相比,分泌的VEGF水平明显更高。VEM在V600E突变细胞系中下调VEGF分泌,而不是Ras突变或Nonbraf/NonRAS细胞系中的分泌。我们发现VEM + AXI组合协同抑制了肿瘤的生长。有趣的是,该组合还抑制了BRAF-WildType异种移植物和同步B16肿瘤的生长。当Axi被我们的内部VEGFR2抑制剂SN35332替换时,该组合还提供了协同效应,这表明组合效应可能是特定于途径的。在EMT,p53,TGF-β和血管生成标志途径中鉴定出与途径相关的合成致死性。最后,我们开发了一种对vemurafenib抗性的细胞系,并表明VEM + Axi的组合使肿瘤复合BRAF抑制疗法。一起,这项研究提供了黑色素瘤生物学中VEGF轴与BRAF信号传导之间的重要联系,并共同靶向这两个轴可以增强BRAF抑制疗法的疗效,不仅在BRAF-突变剂中,而且在BRAF-wild型肿瘤中。