RiboShield™的高温稳定性可确保最大65°C的活动30分钟。抑制剂可以阻止各种核糖核酸的活性,包括中性类型的真核RNase(例如rnases a,b和c)。它不抑制RNases T1,T2,U1,U2,CL3,RNase I和H。抑制剂不含核糖核酸酶和粉状酶,并且通过在75°C的加热15分钟而灭活。
描述:RNase抑制剂是一种重组蛋白,它完全抑制了包括RNase A,B和C在内的广泛的真核RNase,它通过以1:1的比率与高亲和力(4 x 10 -14 m)抑制RNase。它不抑制RNase I,T1,T2,H,U1,U2和CL3。此外,RNase抑制剂没有对聚合酶或逆转录酶活性的抑制作用,因此可用于cDNA合成和一步性RT-PCR反应。RNase抑制剂的鼠版本缺乏在人类版本中鉴定出的一对半胱氨酸,因此它显着提高了对氧化的耐药性。
描述RNase抑制剂(不含甘油)是一种重组蛋白,通过以1:1的比例非共价结合来抑制不同的RNase(a,b,c)。在10 14 m的缔合常数中,RNase抑制剂(不含甘油)在RNass存在是潜在问题的任何应用中都是有用的。无甘油制剂确保RNase抑制剂(无甘油)与冻干格式的兼容性。
核糖核酸酶(RNase)无处不在,可以在许多方面引入实验:例如,在RNA隔离期间的共纯化,裸手和移液器尖端的持久性。这种RNase污染通常不会引起人们的注意。核糖防护RNase抑制剂非常适合对RNA敏感的应用,例如RT-QPCR,因为即使少量RNase也可能不利于最终的实验结果。核糖防护酶抑制剂是一种高效的抑制剂(图1)一系列真核RNass,没有抑制聚合酶或逆转录酶活性(图2),因此可以用于cDNA合成或一步RT-QPCR反应中。
nzy核糖核酸酶抑制剂是一种从大肠杆菌中纯化的重组蛋白。它通过以1:1的比例非共归因于胰腺类型(例如RNase A,RNase B和RNase C)抑制胰腺类型的核糖核酸(RNase; EC 3.1)的活性。nzy核糖核酸酶抑制剂在RNase污染是潜在问题的任何应用中都是有用的。例如,它可用于保护cDNA合成反应,RT-PCR或体外转录/翻译中的模板RNA,并在体外复制过程中保护病毒RNA。此外,它将在RNA分离和纯化和无RNase抗体制备过程中抑制RNase。nzy核糖核酸酶抑制剂对RNase 1,RNase T1,RNase T2,S1核酸酶和RNase H.
处理并处理所有用于执行测定法的生物样品,试剂和材料,就好像它们能够传递感染剂一样。样品必须专门用于某些类型的分析。必须在层流罩下处理样品。。用于处理样品的移液器必须专门用于此特定目的。移液器必须为正配置类型,或与气溶胶过滤器尖端一起使用。所用的尖端必须是无菌的,没有DNASE和RNass,没有DNA和RNA。必须在层流罩下处理试剂。必须以一个可以在一次会话中使用的方式制备放大所需的试剂。用于处理试剂的移液器必须专门用于此特定目的。移液器必须为正配置类型,或与气溶胶过滤器尖端一起使用。所用的尖端必须是无菌的,没有DNASE和RNass,没有DNA和RNA。避免直接与用于进行测定的生物样品试剂和材料接触。戴无粉手术手套。穿防护服(工作服和个人
实际上,2022年的分子纸表明,Thermo Fisher的Invitrogen E-Gel琼脂糖预制凝胶可以通过单个基于电泳的分析3。此方法大大简化了曾经是劳动密集型过程的内容。凝胶电泳中的创新增强了其可用性,使其更安全,更容易获得。预制凝胶消除了对危险化学物质和广泛准备的需求,使研究人员能够在几分钟而不是小时内获得准确的结果。Palaima指出,在其他用于Circrna分析的电泳工作流中,“如果您自己制作,则必须处理甲醛和其他真正令人讨厌的化学物质,因为您必须预防RNases
对饮食microRNA的营养特性进行调查是一个新兴的研究主题,需要从食品科学技术的角度来解决。 在过去的几年中,体外,体内和临床研究表明,水果和蔬菜从宿主细胞mRNA中的microRNA潜力。 1这些发现提出了植物微NA在转录后水平上的跨王国调节作用,该效应可能调节与人类疾病相关的途径。 然而,尽管有希望的结果表明,饮食中的microRNA可以被视为新的营养素,但在以下各节中讨论了不同的研究主题,需要解决我们当前的知识,然后再对其消费进行现实建议,以预防和/或治疗慢性疾病(图1)。 ■膳食microRNA:人类吸收它们吗? 考虑人类可以吸收植物microRNA的跨国调节时,最早的争议之一就是。 在这方面,最近的动物模型研究发现,以SIDT1依赖性机制可以在胃中吸收自由形式的植物microRNA。 2此外,已经证明,唾液中存在的RNass在口腔中的摄入的microRNA的消化开始,并且食物基质在咀嚼过程中通过用食物成分将microRNA封装在保护其降解方面起着关键作用。 3水果和蔬菜中的大多数microRNA都包含在外泌体(例如纳米颗粒)中,这些纳米颗粒也可保护microRNA免受口腔中RNase的降解。对饮食microRNA的营养特性进行调查是一个新兴的研究主题,需要从食品科学技术的角度来解决。在过去的几年中,体外,体内和临床研究表明,水果和蔬菜从宿主细胞mRNA中的microRNA潜力。1这些发现提出了植物微NA在转录后水平上的跨王国调节作用,该效应可能调节与人类疾病相关的途径。然而,尽管有希望的结果表明,饮食中的microRNA可以被视为新的营养素,但在以下各节中讨论了不同的研究主题,需要解决我们当前的知识,然后再对其消费进行现实建议,以预防和/或治疗慢性疾病(图1)。■膳食microRNA:人类吸收它们吗?考虑人类可以吸收植物microRNA的跨国调节时,最早的争议之一就是。在这方面,最近的动物模型研究发现,以SIDT1依赖性机制可以在胃中吸收自由形式的植物microRNA。2此外,已经证明,唾液中存在的RNass在口腔中的摄入的microRNA的消化开始,并且食物基质在咀嚼过程中通过用食物成分将microRNA封装在保护其降解方面起着关键作用。3水果和蔬菜中的大多数microRNA都包含在外泌体(例如纳米颗粒)中,这些纳米颗粒也可保护microRNA免受口腔中RNase的降解。的确,根据人类食用植物外泌体的一项研究的报道,证明外泌体中包含的microRNA到达大肠中,并被肠道微生物群吸收,从而通过益生菌细菌中的不同基因结合了微生物组,从而改变了微生物组(图1)。此外,这种由生姜的外泌体引起的微生物组的修饰产生了小鼠结肠炎的改善,显示了药理学活性。进一步的研究应集中于确定水果和蔬菜所需的消耗,以获得目标组织中膳食microRNA的浓度,以发挥所需的药理作用。