Roberto Aloisio现在的职位教授 - 理论Astroparticle Gran Sasso科学研究所Viale F. Crispi 7,I-67100 L'Aquila(意大利)电子邮件:roberto.aloisio@gssi@gssi.it www.gssi.it:www.gssi.it:www.gssi.it SSI),L'Aquila(意大利)2011年至2017年:研究人员 - Inaf Arcetri天文学观测站,佛罗伦萨(意大利),2008年:访问科学家 - 天文学和天文学系(美国)2005年 - 2011年 - 2011年:研究人员 - 研究人员 - Infn Gran Gran Sasso Nationallies,Lil'Aquila(Italy),Infn Italy 2-2005:2005年) 2002 年:访问科学家 – Kavli 研究所天文学和天体物理学系。芝加哥大学(美国) 2001 – 2002:研究合同 – 物理系 费拉拉大学(意大利) 1999 – 2000:访问博士生 – 理论物理系 萨拉戈萨大学(西班牙) 委员会和机构办公室 2022 – 至今:主任 – 格兰萨索科学研究所物理领域 2022 – 至今:成员 – 格兰萨索科学研究所学术委员会 2022 – 至今:成员 – “Fondazione Vitality” 董事会(https://fondazionevitality.it) 2022 – 至今:成员 – “Fondazione Gran Sasso Tech” 董事会(https://www.gransassotech.org) 2022 – 至今:成员 – 特伦托大学国家空间科学博士项目教授委员会 2018 – 至今:成员 – “Fondazione openpolis” 董事会(http://www.openpolis.it/) 2013 –今天:GSSI 天体粒子物理学博士项目教授委员会成员 2018 – 2022:协调员 – 意大利国家核物理研究所 GSSI-LNGS 联合小组 2017 – 2022:GSSI 评估委员会 (Nucleo di valutazione) 主席 2009 – 2012:成员 – “CFA,格兰萨索天体粒子物理学中心”科学委员会
一般数据 1 ................................................................................ 学术培训 2 ................................................................... 学位 3 .................................................................... 学术成果 4 .................................................................... 学术活动总结 6 .................................................................... 最新出版物 7 ........................................................................ 科学期刊文章 8 .................................................... 会议论文集文章 14 ....................................................................大会摘要 25 ................................................................... 技术报告 29 ................................................................... 普及文章和科学政策 30 .................................................... 论文和书籍 33 ................................................................... 大会和会议上的演讲 34 ................................................... 外部书目引文 51 ................................................................... 讲授课程 101 .................................................................... 论文指导 115 ...................................................................... 外部项目管理 119 ................................................................ 继续教育课程 120 ................................................................. 会员资格 121 ........................................................................................ 参加会议组委会 122 ........................................................ 课程简介 129 .................................................................
当前职位(S)癌症预防和控制科助理教授,医学院俄亥俄州立大学教育大学爱荷华州爱荷华州俄亥俄州立大学教育大学,爱荷华州,爱荷华州哲学博士(PHD),健康与人类生理学,重点是健康促进,2019年12月。GPA:3.60健康与人类生理学硕士,重点是健康促进,2015年夏季。gpa:3.84西弗吉尼亚大学,摩根敦,WV生物学理学学士学位,2010年12月,学术任命助理教授2024年9月 - 现任P现状公共卫生学院俄亥俄州立大学助理教授2024年4月 - 现任M地位设计学院自由艺术学院和科学院俄亥俄州立大学助理教授。2023 - 目前的礼貌任命公共卫生学院俄亥俄州立大学助理教授2023年12月 - 现任礼貌任命设计学院文科和科学学院俄亥俄州立大学助理教授2022年12月2022年 - 现任癌症预防与内科医学学院癌症预防与俄亥俄州州立大学专业医学学院的培训机构和经验式研究机构DEC 2222220220年2020年。患者报告了迈阿密迈阿密大学(佛罗里达州迈阿密)的健康以elifestyles计划的结果,2019年4月至2020年4月
自组装折纸神经探针,用于可扩展、多功能、三维神经接口 Dongxiao Yan 1*、Jose Roberto Lopez Ruiz 1*、Meng-Lin Hsieh 1、Daeho Jeong 1,2、Mihály Vöröslakos 3、Vittorino Lanzio 1、Elisa V. Warner 4、Eunah Ko 1、Yi Tian 1、Paras R. Patel 5、Hatem ElBidweihy 6、Connor S. Smith 6、Jae-Hyun Lee 2、Jinwoo Cheon 2、György Buzsáki 3、Euisik Yoon 1,2,5,7 ** 1 密歇根大学电气工程与计算机科学系,密歇根州安娜堡。 2 韩国首尔延世大学基础科学研究所 (IBS) 纳米医学中心和高级科学研究所纳米生物医学工程研究生课程 (Nano BME)。3 纽约大学朗格尼医学中心神经科学研究所,纽约,纽约州。4 密歇根大学计算医学和生物信息学系,密歇根州安娜堡。5 密歇根大学生物医学工程系,密歇根州安娜堡。6 美国海军学院电气与计算机工程系,马里兰州安纳波利斯。7 密歇根大学机械工程系,密歇根州安娜堡。* 同等贡献作者 ** 通讯作者摘要 柔性皮层内神经探针因其可减少组织反应而在高分辨率神经记录中延长寿命而备受关注。然而,传统的单片制造方法在以下方面遇到了重大挑战:(i) 扩大电生理记录位点的数量;(ii) 整合其他生理传感和调节;以及 (iii) 配置成三维 (3D) 形状以用于多面电极阵列。我们报告了一种创新的自组装技术,该技术允许实现灵活的折纸神经探针作为克服这些挑战的有效替代方案。通过使用磁场辅助混合自组装,可以将具有各种模态的多个探针以精确对准的方式堆叠在一起。使用这种方法,我们展示了一种多功能设备,该设备在单个柔性探针上集成了可扩展的高密度记录位点、多巴胺传感器和温度传感器。同时展示了大规模、高空间分辨率的电生理学以及局部温度感应和多巴胺浓度监测。通过使用最佳可折叠设计和毛细管力将平面探针缠绕在直径为 80~105 μm 的细纤维上,组装了高密度 3D 折纸探针。通过集成在 3D 折纸探针表面的神经元大小的微型 LED (μLED) 的照明可以实现定向光遗传学调控。我们可以识别探针周围 360° 的角度异质单元信号和神经连接。通过在行为小鼠中对 64 通道堆叠探针进行长达 140 天的长期记录来验证探针的寿命。借助所介绍的模块化、可定制的组装技术,我们展示了一种新颖且高度灵活的解决方案,以适应多功能集成、通道缩放和 3D 阵列配置。1. 简介增强记录能力和集成多模态是神经探针开发的两个基本需求。高通道数神经探针已证明其
* 我们要感谢 Rosalind Bennett、Roberto Billi、Ricardo Caballero、Fabio Canova、Martin Ellison、Mike Joyce、Christian King、Luisa Lambertini、Chris Martin、Ian Martin、Fred Malherbe、Jordan Pandolfo、Evi Pappa、Ricardo Reis、Glenn Rudebusch 和 Mathias Trabandt 的深刻评论和反馈,以及 Chi Hyun Kim 和 Gabriel Madeira 的有益讨论。我们还受益于 2021 年 FDIC 研讨会金融研究中心参与者的评论;2021 年圣安德鲁斯大学研讨会、2021 年汉堡大学数量经济学研讨会、2020 年科尔比学院宏观动力学研讨会;ASSA 2020 CeMENT 研讨会;密歇根州立大学 2019 年中西部宏观经济会议上的金融脆弱性会议; 2019 年柏林 DIW 举办的宏观、金融和经济史女性研讨会;牛津大学纽菲尔德学院举办的第二届 NuCamp 年度会议;巴西第十三届金融稳定和银行业年会;爱丁堡举办的第 50 届货币、宏观和金融会议;科隆举办的 2018 年欧洲经济协会大会;以及英格兰银行系列研讨会。本文中表达的观点由作者全权负责,不应被理解为反映美国联邦存款保险公司、英格兰银行或其委员会的观点。“英格兰银行,伦敦 EC2R 6DA,英国。电子邮件:kristina.bluwstein@bankofengland.co.uk。联邦存款保险公司金融研究中心,华盛顿特区,20429,美国。电子邮件:jyung@fdic.gov。
Roberto Nitsch 毕业于意大利那不勒斯大学医学生物技术专业,并获得了分子遗传学博士学位。后来,他搬到了维也纳,专注于小鼠遗传学和癌症生物学,最近又研究了隐性遗传学。随后,他将研究课题转向 CRISPR/Cas9 基因组工程,并于 2014 年加入阿斯利康,负责药物发现和肿瘤学的 CRISPR 小鼠模型。自 2017 年以来,他担任临床药理学和安全科学副主任,开创了治疗基因组编辑的安全评估。如今,Roberto 是阿斯利康基因治疗安全小组的主任,他正在支持 CRISPR 药物的生成。
天然铁矿石洞穴已经闻名了几个世纪,但由于其尺寸很小,斑点缺乏,并且在许多情况下,由于它们在偏远地区的位置,因此没有引起太多关注。随着巴西环境法的最新变化和在巴西的米纳斯·格拉斯州以及巴西帕拉州卡拉萨斯州的QuadriláteroFerrífero的铁矿石勘探的增长,其中大量这些洞穴被发现和分类。洞穴环境立法需要几项技术研究,但主要是关于运营许可的地理结构方面,通常是长期的。地球物理学表明,在最近的研究中,有可能加速和改善洞穴岩石结构图,尤其是其屋顶,以阐明稳定性问题。浅地地球物理方法用于绘制和表征山洞所在的岩石质量。在这些铁质的喀斯特环境中对地球物理映射的挑战是相当大的,因为洞穴的尺寸很小,并且宿主岩石的物理特性很可变。在这项工作中,分析并讨论了在巴西北部的N4en Iron Iner矿场上执行的,在位于巴西北部的N4en Iron Ine的天然洞穴上执行的电阻率和GPR(地面穿透性雷达)的结果。
晚期黑色素瘤是肿瘤学的一项关键挑战,因为它的死亡率很高和对传统疗法的抵抗力,例如化学疗法和定向疗法,这些疗法通常在有效性上受到限制并引起严重的副作用。最近,单克隆抗体免疫疗法已成为治疗这种类型癌症的革命性方法。这些抗体旨在与癌细胞中的特定抗原连接,从而增强免疫反应并促进肿瘤细胞的破坏。ipilimumab,例如,抑制了CTLA-4,而Nolutionary和pembrolizumab直接蛋白PD-1则在晚期黑色素瘤患者的延长生存率方面取得了显着成功。尽管有进步,免疫疗法也有挑战,例如免疫不良反应(结肠炎,肝炎),除了耐药性问题外,还需要仔细管理,这需要持续的研究以制定更有效的策略。基于患者的遗传和免疫学特征的治疗反应和定制治疗定制的预测生物标志物的搜索是有希望的领域,可以最大程度地提高治疗疗效并最大程度地减少不良反应。简而言之,单克隆抗体的免疫疗法代表了治疗晚期黑色素瘤的重大进步,为历史上有限的治疗方法提供了新的观点和希望。关键词:晚期黑色素瘤,免疫疗法,单克隆抗体,治疗挑战
摘要:在过去的几十年里,大数据促进并改善了我们在医学研究和临床领域的日常工作;实现这一点的策略是了解如何组织和分析数据,以实现最终目标,即改善医疗保健系统,包括成本和收益、生活质量和患者结果。本综述的主要目的是说明大数据在医疗保健领域的最新发展、特点和架构。我们还想展示大数据在区块链和人工智能等最新技术中的不同应用和主要机制,认识到它们的优点和局限性。也许,医学教育和数字解剖学是尚未开发的领域,正如我们所提议的那样,研究它们可能会有利可图。使用这些不同的技术可以彻底改变医疗保健系统。因此,我们正在解释这些系统的基础,重点关注医疗领域,以鼓励医生、护士、生物技术和其他医疗保健专业人员参与并创建更高效、更有效的系统。
帕金森氏症和相关疾病和临床帕金森氏症和相关疾病椅子的最佳论文:休伯特·费尔南德斯(Hubert Fernandez)(美国克利夫兰),华凡·尚氏(Huifang Shang)(中国成谷)和丹尼尔·特鲁恩(Daniel Truong)和丹尼尔·特鲁恩(Daniel Truong)(美国源泉,美国泉源)Prd:Roberto Cilia(Roberto Cilia(Roberto cilia)(米兰,意大利)(11:55 - 11:5-5-5-5-5) Saint-Hilaire(美国波士顿)(11:45 - 12:05)