随着全球人口的增长和对粮食的需求不断增加,农业生产面临着巨大的压力。与此同时,气候变化和资源限制加剧了这些挑战,进一步凸显了对可持续农业实践的需求。为了解决这些复杂的问题,植物科学领域正在经历一场技术革命。人工智能 (AI)、计算机视觉和机器人技术的快速发展正在重新定义植物的研究方式和农业实践的管理方式。从高通量表型到精准农业和实时监测,这些技术正在显著提高效率和准确性,为更具弹性和可持续性的农业系统奠定基础。本研究主题汇集了开创性的研究,以展示人工智能如何推动植物科学的发展并为现代农业提供创新解决方案。
摘要是由于最近对教育机器人技术的兴趣爆炸(ER)的爆炸,本文试图通过提出新的思考和探索相关概念的新方法来探讨这一领域。本文的贡献是四倍。首先,未来的读者可以将本文用作探索教育机器人技术的预期学习成果的参考点。从详尽的潜在学习收益列表中,我们提出了一组六个学习成果,可以为机器人活动设计的可行模型提供一个起点。第二,本文的目的是作为最近的ER平台的调查。在越来越多的可用机器人平台的驱动下,我们收集了最新的ER套件。我们还提出了一种对平台进行分类的新方法,该平台没有制造商的模糊年龄范围。所提出的类别(包括无代码,基本代码和高级代码)源自学生需要有效地使用它们的先验知识和编程技能。第三,随着ER竞赛的数量和比赛与ER平台的增加同时增加,该论文介绍并分析了最受欢迎的机器人事件。机器人竞赛鼓励参与者在促进特定学习成果的同时发展和展示自己的技能。本文旨在提供这些结构的概述并讨论其效率。最后,本文探讨了提出的ER竞争的教育方面及其与六个拟议的学习成果的相关性。这提出了一个主要特征组成竞争并实现其教学目标的问题。本文是第一项研究,将潜在的学习收益与我们的竞争与我们的最佳知识相关联。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
该博士职位将集中于研究实现机器人系统的研究,这些机器人系统大多以无监督的方式表征和监测海洋环境。自主系统可以在海洋中进行具有成本效益的广泛数据收集,监视和检查,并为执行持续操作的可能性较少,而对人类运营商的依赖较少。这些属性使自主系统对于执行操作以探索,映射和监视具有挑战性的海洋环境的机器人组织是可取的。但是,在非结构化和苛刻的海洋中,成功的任务需要通过优化的观察平台系统和监督风险控制来提高安全性,智能和操作能力,该操作是在保障项目中解决的(“智能自治系统,用于保护海上的保护操作和基础设施””。该立场对正在进行的项目保障和CARO(“自动机器人操作中心海底”)中的研究补充,这些研究正在开发类似的功能,重点是海底基础架构。具体来说,该职位将解决这些领域的一个或多个:
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
摘要 - 计算机视觉和深度学习方面的进步导致人们对Ai-Art的领域的兴趣激增,包括数字图像创建和机器人辅助绘画。传统的绘画机依靠静态图像和offl ine处理来将视觉反馈纳入其绘画过程中。但是,这种方法并未考虑绘画的动态性质,并且无法将复杂的重叠模式分解为单个笔触。作为基于框架的RGB摄像机的替代方法,神经形态摄像机通过异步事件流捕获场景中光强度的变化,有望克服传统计算机视觉技术的某些固有局限性。在此项目中,提出了一种用于物理绘画的机器人系统,该系统利用了动态视觉传感器(DVS)摄像机的基于事件的视觉输入。为了利用摄像机的超低潜伏期和稀疏编码,该建议的系统还采用了基于事件的信息处理,并在神经形态Dynapse-1处理器上使用尖峰神经网络实现。机器人系统接收DVS感官数据,它代表了笔触的轨迹,并计算了所需的关节速度,以闭环方式用6多F的机器人臂重新创建中风。控制器还将触觉反馈从力量扭转传感器集成在一起,以动态调整末端exector的距离,这取决于刷子的变形。在项目范围内,进一步证明了如何从DVS数据中提取有关感知的笔触中风的速度信息。该系统在现实世界中进行了测试,并成功生成了物理笔触的集合。提出的网络是迈向完全尖峰的机器人控制器的第一步,能够无缝融合基于事件的感觉反馈,从而提供超低潜伏期响应能力。除了在机器人辅助绘画中的实用性之外,开发的网络还适用于需要实时自适应控制的任何机器人任务。
摘要 - 该项目具有客观地识别使用传感器“情感EEG Neuroset”的一些面部表情。此设备是一种能够通过脑电图技术(EEG)接收和解释大脑生物电活动的传感器,此外,还具有16个通道,并连续准确接受脑电波。此外,传感器具有易于使用的SDK,即使没有任何大脑信号获取经验,任何人即使没有任何经验。Emotiv®数据被转移到MATLAB®进行过滤脑电波,以通过串行通信向Arduino发送信息。因此,在Arduino板上获得了三种不同表达式的识别,即眨眼,眨眼和微笑,每个表达式在Arduino板上都有不同的LED颜色。
在93年初船上的多感觉机器人成功地以宇航员以及不同的远程动物地面控制模式在官方模式下成功地工作。这些包括在线远程操作和望远镜程序 - 通过在虚拟环境中展示概念来进行学习的技术。实验成功的关键技术一直是其多种抓地力技术,本地(共享的自治)反馈控制概念以及远程自动型地面站中强大的延迟3D形图模拟(预测性模拟)。由于这些概念不再只是想法或效率,而是证明了它们在真实空间中的效率,因此知道如何将其应用于即将到来的太空机器人任务。本文重点介绍了远程动物以及3D图形仿真概念,结合了图像和其他传感器信息,以执行提出的望远镜编程方法。将通过概述实验性维修卫星(ESS)环境来描述原型卫星修复任务的场景,包括捕获和码头的策略。
脚部成分是一种消耗量,其寿命通常为2-6个月(取决于频率,持续时间和工作条件)。磨损会更加严重,尤其是当它在粗糙的地面上运行时。发现脚垫显然被磨损或损坏,或者在行走时机器人在地面上的撞击噪声会大大增加,请及时更换脚部末端组件,以避免脚部损坏脚部,并导致机器人异常移动。
Robot Part Name .......................................................................................................................................................................8 Prepare Before Starting Up.....................................................................................................................................................9 Robot internal architecture .................................................................................................................................................. 10 Robot Operating Mode ........................................................................................................................................................ 10 Startup and Shutdown .......................................................................................................................................................... 11 Battery Pack .............................................................................................................................................................................. 12 Foot Assembly .......................................................................................................................................................................... 16 Remote Control Module ................................................................................................................................................................ 19