受到天然面包结构的启发,研究人员一直在开发用于耐撞击生物塑料,陶瓷装甲和仿生合金复合材料的高级材料。尽管在改善材料的可塑性方面取得了进展,但大多数现有材料仍然由单尺度脆性单元组成。缺乏分层主动界面和自主响应功能限制了其延展性和整体功能。
通过CRISPR – CAS系统进行的自然原核防御需要在称为适应的过程中将间隔者整合到CRISPR are中。为了搜索具有增强能力的适应蛋白,我们建立了一个永久性的DNA PAC Kaging和Transing(P EDP AT)系统,该系统使用T7 pha ge的菌株将pha ge to packa ge质粒构成,然后将其转移并杀死宿主,然后使用T7噬菌体的不同应变来重复该周期。我们使用PED-PAT来识别更好的适应蛋白 - – Cas1和cas2 - 通过富集具有更高适应性效率的突变体。我们识别出在体内增强的10倍增强的cas1蛋白。在体外,一个突变体具有较高的积分和DNA结合活性,与野生型CAS1相比,另一个突变体具有较高的分解活性。最后,我们结婚说,他们选择的特定座位可降低原始图案。在技术上使用的P EDP或型号屏幕,需要有效,轻松的DNA转导。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。是
这些评估的标志性输出是“燃烧的余烬”图。燃烧的余烬首先在第三次评估报告中使用,以形象化关注的原因,这些原因构成了与气候变化相关的影响以及对各个系统和部门的风险。在这些图中,颜色转变显示出对人类和生态系统的评估风险水平的变化,这是气候变化的函数
1魁北克研究中心大学医院中心 - 加拿大魁北克G1V 4G2的拉瓦尔大学; 2魁北克大学心脏病学研究所(CRIUCPQ) - 加拿大魁北克G1V 4G5的Laval University,加拿大魁北克大学的心脏病学研究中心; 3舍布鲁克大学医院中心(CHUS)和CRCHUS,魁北克J1H 5N4,Sherbrooke的CRCHUS 3医学遗传学服务; 4加拿大魁北克G1V 0A6大学Laval Cancer Research Center,加拿大魁北克; 5加拿大魁北克G1V 0A6,魁北克省,魁北克省法学与工程学院生物化学,微生物学和生物信息学系; 6加拿大魁北克G1V 0A6牙科医学学院口腔生态学研究小组,加拿大魁北克; 7加拿大魁北克G1V 0A6魁北克大学牙科医学学院Hérelle细菌病毒参考中心的7félix; 8国家科学研究中心(CNRS),Luminy Campus,13288 Marseille Cedex 09,Luminy Campus国家科学研究中心(CNRS)的建筑和功能; 9生物大分子的建筑和功能,Aix-Marseille大学,Luminy Campus,13288 Marseille Cedex 09,法国
之前对模仿大脑的人工智能系统(即神经网络)的研究表明,在神经网络活动中注入随机波动实际上可以提高它们在学习执行任务时的表现。然而,之前的研究是在相对简单的神经网络上进行的,这让人怀疑这种影响在现实生活中到底能发挥多大作用。
抽象的外观变化是在室外环境中自动驾驶汽车可视定位的最具挑战性问题之一。当前图像与地图中的地标之间的数据关联可能很困难,如果地图是在不同的环境条件下构建的。本文提出了一种解决方案,以构建和使用多条件地图,其中包含在不同条件下记录的序列(白天,夜晚,雾,雪,雨,雨,季节的变化等)。在视觉定位期间,我们利用排名函数从地图中提取最相关的信息。此排名功能旨在考虑车辆的姿势和当前环境状况。在映射阶段,通过不断向地图添加数据来涵盖所有条件,从而导致地图大小的持续增长,进而导致定位速度和性能。我们的地图管理策略是一种增量方法,旨在限制地图的大小,同时使其尽可能多样化。我们的实验是对使用我们的自主班车以及广泛使用的公共数据集收集的真实数据进行的。结果表明,我们的方法在不同的挑战性条件下显着改善了本地化性能。
深度学习方法已显示出在医学图像分析 [1] 中的高性能潜力,尤其是计算机辅助诊断的分类。然而,解释它们的决策并非易事,这可能有助于获得更好的结果并了解它们的可信度。已经开发了许多方法来解释分类器的决策 [2]–[7],但它们的输出并不总是有意义的,而且仍然难以解释。在本文中,我们将 [8] 的方法改编为 3D 医学图像,以找出网络对定量数据进行分类的基础。事实上,定量数据可以从不同的医学成像模式中获得,例如用正电子发射断层扫描 (PET) 获得的结合电位图或从结构磁共振成像 (MRI) 中提取的灰质 (GM) 概率图。我们的应用重点是检测阿尔茨海默病 (AD),这是一种诱导 GM 萎缩的神经退行性综合征。我们使用从 T1 加权 (T1w) MRI 中提取的 GM 概率图(萎缩的代理)作为输入。该过程包括两个不同的部分:首先训练卷积神经网络 (CNN) 以将 AD 与对照对象进行分类,然后固定网络的权重并训练掩码以防止网络正确分类训练后已正确分类的所有对象。这项工作的目标是评估最初为自然图像开发的可视化方法是否适用于 3D 医学图像,并利用它来更好地理解分类网络所做的决策。这项工作是原创作品,尚未在其他地方提交。
数字阴影(DS),它利用机器学习驱动的数据同化技术,例如非线性贝叶斯过滤和生成AI(Spantini,Baptista和Marzouk 2022; Gahlot,Orozco等人2024),为监视CO 2存储提供了更详细,更可靠的方法(Herrmann 2023; Gahlot等人。2023; Gahlot,Li等。2024; Gahlot,Orozco等。2024)。通过将不确定性(如渗透率)纳入储层特性,该框架提高了CO 2迁移预测的准确性,包括羽状压力和饱和度,从而降低了GCS项目的风险。但是,数据同化取决于有关储层特性的假设,将储层状态与地震特性联系起来的岩石物理模型以及初始条件。如果这些假设不准确,则预测可能会变得不可靠,进而将危害GCS操作的安全性。减轻这种风险的一种方法是增加用于训练负责数据同化过程的神经网络的预测合奏 - 将先前的预测样本映射到后部。在本演讲中,我们证明,通过合并各种岩石物理模型来增加预测集合,从而减轻了使用不准确模型的负面影响(例如,均匀与斑块饱和模型)。此外,我们发现在某些情况下,集成增强可以提高预测精度。