美国太空港归新墨西哥州所有,是世界上第一个专门建造的商业太空港。维珍银河已签订 20 年租约,将其全球总部设在美国太空港并启动其太空旅游计划。太空港运营中心是一个 14,000 平方英尺的圆顶结构,里面设有太空港办公室、支持承包商办公室以及应急响应人员和设备。太空港跑道长 12,000 英尺,宽 200 英尺,方向为 16-34。混凝土表面设计用于容纳所有类型的飞机,包括宽体商用飞机。美国太空港也被众多私营公司和科学与工程研究项目使用。目前,有许多企业家正在开发和试飞垂直和水平运载火箭,以探索商业太空旅行机会。除了维珍银河之外,Spaceport America 过去和现在的客户还包括洛克希德马丁、波音、Moog-FTS、UP Aerospace、Microgravity Enterprises、Armadillo Aerospace 和 Celestis。
摘要。自主火箭着陆是航空航天工程中的关键里程碑,这是实现安全且具有成本效益的太空任务的关键。本文介绍了一种开创性的方法,该方法采用了强化学习方法来提高火箭着陆程序的精确性和效率。基于逼真的Falcon 9模型,该研究集成了复杂的控制机制,包括推力矢量控制(TVC)和冷气推进器(CGT),以确保敏捷推进和平衡调整。观察数据,传递关键参数,例如火箭位置,方向和速度,指导强化学习算法做出实时决策以优化着陆轨迹。通过战略实施课程学习策略和近端政策优化(PPO)算法,火箭代理进行了迭代培训,稳步提高了其在指定垫上执行软着陆的能力。实验结果强调了所提出的方法的疗效,在实现精确和受控下降方面表现出非常熟练的能力。这项研究代表了自主着陆系统的进步,准备彻底改变太空探索任务,并在商业火箭企业中解锁新的边界。
光纤通道最初是作为存储区域网络开发的。它通过光纤或电缆作为物理层提供 Gbit/s 范围(从 1 Gbit/s 到 10 Gbit/s)的吞吐量。光纤通道 FC-AE-1553 使用 MIL-1553 作为上层协议,但它有很大不同。该协议非常灵活和复杂 - 有 52 个光纤通道规范定义不同的方面或用途,连接计算机系统、存储和其他外围设备。这些规范可通过美国国家标准协会 (ANSI) 公开获取。协议栈(图 5)类似于 OSI 模型,其中最高级别允许通过光纤通道网络映射另一个协议(上层协议)。 FC-AE-1553 是通过光纤通道映射 MIL-1553 总线协议,其物理层适合在航空电子环境中使用。
美国国家航空航天局的使命是执行美国太空探索、科学调查和和平利用计划。经戈达德夫人批准,美国航空航天局将其位于马里兰州格林贝尔特的新太空困境中心命名为罗伯特·H·戈达德。1960 年 3 月 11 日成功发射的美国通信太空探测器 PIONEER V 和 1960 年 4 月 1 日发射的世界第一颗气象卫星 TIROS I 只是戈达德太空困境中心早期工作的缩影。这位伟大的美国人罗伯特·H·戈达德博士的创造性成就将永远被人们铭记和尊敬。
自 20 世纪 50 年代以来,核火箭主要由洛斯阿拉莫斯国家实验室研发,以提供更快的太空旅行方法。(Bussard 和 DeLauer,1958 年;Dewar,1974 年;Borowski,1987 年;Dewar,2007 年)。这些技术利用核设计,以传统方式将热量从密封核心传输到液氢膨胀器或热电子转换器。从 20 世纪 80 年代开始,一种更有效的核能转换设计出现在火箭中(Haslett,1995 年;Lieberman,1992 年),当火箭远离地球大气层时,核心就会暴露在外,直接使用核碎片推力。从 2011 财年到 2014 财年,NASA 先进概念研究所研究了裂变碎片火箭发动机 (FFRE)。 (Werka 等人,2012 年;Chapline,1988 年;Chapline 等人,1988 年;Chapline 和 Matsuda,1991 年)。FFRE 会以极高的比冲(I SP)将裂变碎片的动量直接转化为航天器动量。I SP 是衡量发动机使用燃料产生推力的效率的指标。对于火箭技术,I SP 定义为每单位重量(地球上)推进剂在时间内的积分推力。(Benson,2008 年;Sutton 和 Biblarz,2016 年)。I SP 由公式 1 给出
劳动力市场监管局 (LMRA) 与国籍、护照和居住事务局 (NPRA) 以及各省各自的警察局合作,在北部和南部省份开展了检查活动。这些活动报告了多起与劳动力市场和居住法相关的违法行为。所报告的案件被提交法律诉讼。LMRA 强调其承诺,将与相关政府机构合作,通过密集的检查计划报告违法行为。它再次呼吁社会所有成员支持政府机构解决非法劳工行为的努力,通过该机构网站 www.lmra.bh 上的电子表格或拨打该机构的呼叫中心 17506055 报告违法行为。
AFRL 正在支持太空系统司令部和其他机构开发战术响应太空 (TacRS) 概念。AFRL 的努力被称为战术响应太空访问 (TRSA),尽管它不仅涉及响应太空访问,还涉及响应航天器。AFRL 正在充分利用其与行业的 PPP 以及过去和现在的研究工作来建立技术基础,使 TacRS 成为一种按需能力,就像指挥官召唤无人机执行 ISR 或打击任务一样。TRSA 不仅涵盖推进技术,还涵盖实现快速、响应太空访问和在轨操作所需的其他方面。AFRL 与霍尼韦尔合作开发其 HALAS 气象系统,以更好地了解发射场的当地天气情况,从而减少甚至消除天气延误和延误。AFRL 还在研究如何指挥和控制多个商业和政府发射场,以实现在 24 小时内发射命令内的“同时”发射。
虽然国防预算应该鼓励私营部门参与,但同样重要的是要认识到公共控制必须保持至高无上的领域。涉及高度机密技术的领域,如导弹系统或核能力,最好由国有企业管理,因为它们对国家安全有直接影响。同样,网络安全系统和关键基础设施等战略资产应继续受到政府的严格监督,以防止出现漏洞。平衡这些优先事项需要采取细致入微的方法,区分私人创新可以蓬勃发展的领域和政府控制必不可少的领域。
虽然 RDE 已经开发和测试了很多年,但自从 NASA 开始研究其“月球到火星”任务架构以来,该技术就引起了广泛关注。从理论上讲,该发动机技术比传统推进和依赖受控爆炸的类似方法更有效。2022 年夏天,先进推进开发商 In Space LLC 和印第安纳州拉斐特的普渡大学合作,在马歇尔对 RDRE 进行了首次热火测试。
这篇研究文章在 2022 年 CJCS 国防和军事战略论文竞赛的战略研究论文类别中获得第二名。虽然 JFSC 的许多学生都取得了很高的研究水平,但提交给比赛的论文代表了专业军事教育机构每年完成的一些最好的研究、写作和思考。获得认可的手稿达到了极高的标准。其他比赛获奖者将在《联合部队季刊》上找到。由 1 CDR Von P. H. Fernandes、Maj Ashley Gunn、MAJ Lucas Hoffmann 和 Lt Col Nita McQuitery 撰写 1959 年,海军少将亨利·埃克尔斯 (Henry Eccles) 将后勤描述为“国家经济与其作战部队战术行动之间的桥梁”。 1 火箭后勤,即使用轨道级火箭将货物从地球上的一个地方运送到另一个地方,有可能大大缩短这一距离。自埃克尔斯发表声明以来的 70 年里,对更快、更高效的后勤行动的竞争需求改变了国防部 (DoD) 开展后勤的方式以及后勤对全球军事行动的贡献。高效、精简的后勤不仅为指挥官提供了行动自由,而且扩大了作战范围。国防部开展高效后勤行动的能力决定了美国在全球范围内投射力量的程度和范围。虽然空运成为第二次世界大战后勤行动的一个特色,但货船继续为全球军事行动运输绝大多数物资和军事装备。空运加快了后勤工作,但需要付出财政成本,并且对重量和体积有限制。然而,空运速度对于美国欧洲司令部、美国非洲司令部、美国南方司令部和美国印太司令部战区的一些后勤挑战来说仍然不够快。美国太空军有一个新的尖端研发项目,即先锋计划,该计划正在探索使用轨道级火箭进行点对点运输。火箭物流承诺比战场上的空运速度更快,但成本更高,对货物类型的限制也更多,在本文的范围内,货物类型定义为人员和设备。与民用运输任务不同,军事任务没有可预测的目的地,无法投资基础设施开发以确保顺利着陆。2因此,先锋计划寻求的解决方案是拥有全地形最终下降系统,具有坚固的外部结构以处理着陆时的异物碎片 (FOD),并使用新技术,例如目前由 NASA 开创的技术,这将允许下降的火箭在最终下降过程中创建着陆台。