摘要:俄罗斯Gird-09火箭在1933年首次证明的混合火箭推进,结合了液体氧化剂和固体燃料以产生推力。尽管有许多优势,例如增强的安全性,可控性和潜在的环境益处,但混合动力尚未在太空应用中发挥全部潜力。近年来,关于混合推进的研究在学术界和工业中都取得了巨大的动力。最近的成就,例如学生火箭的海拔记录(64公里),第一台电动泵送的混合动力火箭的发射以及成功的25 S悬停测试突出了混合火箭的潜力。但是,尽管混合社区正在不断增长,但尚不存在工业利用和空间验证。在这项工作中,我们通过从文献中提出潜在的应用领域来重新评估混合火箭发动机的可能性。最重要的是,我们确定了阻碍太空部门混合推进的突破的技术挑战,并评估弥合混合火箭开发中差距所必需的技术和方法。
韦斯科特创业园 (前身为火箭推进机构) 是越来越多推进器和推进服务公司的所在地。本文概述了其中一些公司的近期活动。Airborne Engineering Limited 报告了其 LOX/LCH4 测试设施的调试工作以及其 VTVL 火箭的进一步测试工作。Protolaunch 报告了使用各种推进剂在 20N-500N 范围内的推进器技术的一系列发展。URA Thrusters 一直在开发各种各样的在轨使用电力推进选项。最后,Race to Space 计划启动,为来自英国大学的学生提供动手推进培训。该计划得到了 Airborne Engineering 和 Protolaunch 的支持,他们为学生举办了热火发动机测试,而 European Astrotech 则协助进行冷流测试。
4.1 零件标记 ................................................................................................................................................................................ 7 4.2 尺寸公差 ................................................................................................................................................................................ 7 4.3 机械描述和接口 ................................................................................................................................................................ 7 4.4 电气接口 ............................................................................................................................................................................. 10 4.5 可达性和停留区 ................................................................................................................................................................ 11 4.6 材料和表面处理 ............................................................................................................................................................. 12 4.7 刚度 ................................................................................................................................................................................ 12 4.8 连接结构的刚度 .............................................................................................................................................
CNTR 本质上是一种高性能核热推进 (NTP) 系统,其推进剂直接由反应堆燃料加热。CNTR 与传统 NTP 系统的主要区别在于,CNTR 不使用传统的固体燃料元件,而是使用液体燃料,液体通过离心力包含在旋转圆柱体中。CNTR 的性能目标是在使用氢推进剂时以 1800 s 的比冲提供高推力,在使用氨、甲烷或肼等被动可储存推进剂时以 900 s 的比冲提供高推力。如果实现,这样的性能将使人类 420 天的火星往返任务和其他先进的太空任务成为可能。高效使用任何挥发性物质作为推进剂的能力还可以极大地促进小行星和柯伊伯带天体等太空资源的开发。
制造这些导弹。美国认为,这笔交易违反了国际不扩散协议,因为发动机技术可用于导弹发射器。印度和俄罗斯否认这一指控,称其荒谬。尽管如此,俄罗斯现已同意只向印度出售组装好的发动机,而不出售技术。从美国的角度来看,更重要的是,俄罗斯已同意遵守导弹及其技术控制制度 (MTCR) 的条款。美国曾担心资金匮乏的俄罗斯可能会不加区别地出售军事技术:据报道,俄罗斯已向伊朗出售潜艇,并向利比亚出售火箭燃料成分。美国告诉俄罗斯,除非他们达成和解,否则将撤回允许他们有限进入商业卫星发射市场的提议。它还威胁要禁止美国与印度火箭交易的俄罗斯合作伙伴 KB Salyut 进行所有交易。由于 KB Salyut 也设计航天器硬件,因此该禁令将阻止俄罗斯参与美国空间站和航天飞机计划。俄罗斯同意废除与印度的协议的第二天,美国解除了卫星发射协议的封锁(见《自然》363,661;1993)。预计俄罗斯总理维克托·切尔诺米德林将签署该协议。
全部 inJUUft(')r polkict ~uircd m ~ obumcJ hy r~.gn Builder 和 IJesir.n Confulmm 11Lill ~ auh jm 至 1pprov•l 由 U!'i"trl•t)' 表示表格 aod sub.tafl«'。Alf •11c h policia ""!Ul~ bJ Univcr11ry for Co mrncrcrtl t,1rm ( ~c~J Li1b11lry。E..xioa,I l •b1l1ty,f>rofm-i onal l.iab1liry an Out incu Aurornobi lc I 11 btllry dull lit ltNod by c m~ica wnh •最佳 IUting 的 A· 或 btr m •nd • finand&I dw1fiution ol VIII 的 betttt,Ot wi th tlll l'qlllnknr nari<1g 由 St :and.vd ind “1or '1 或 Moody'• 全部polaoo ~uirtd by Unlvmtl)' Mt W~tr'• C'.om ptNllllOf'I 和 E.n•~r · , 1.nbthry dt1JI be 111Uf'd by <..omp1 ma with a (I) 6m Ralina ofR• 0# hc-.t1'r •nd 财务 d_,fiomon ol Vlll 或 bcmr , Of wnh an tqu1valm1 rangng by Su u1da .ld and ~IOt''• nr Moody'11 Of (1) th~ &rt' - Cf “.t>k 10 Un1¥tm ry Such lruurana ah。!I bt ..,nntn ro bt ooc km~ (u lft!Utr ahfom11 la"") (~11~rf ot lnsu~ .. •hall b. IJlllCld on l~ Ur11~ni1y ' • 形式ahfom11 la"") (~11~rf ot lnsu~ .. •hall b. IJlllCld on l~ Ur11~ni1y ' • 形式
Xtreme Prototypes X-1 第二代火箭飞机,用于 Flight Simulator X,版本 1.0。版权所有 © 2009 Xtreme Prototypes, Inc. 保留所有权利。软件功能和手册内容如有更改,恕不另行通知。Xtreme Prototypes X-1 SG for Flight Simulator X 既不是免费软件也不是共享软件,并且受随附的最终用户软件许可协议中指定的使用条款约束。本软件和手册受国际版权法保护。请勿非法复制本软件和/或其相关组件和文档,包括用户手册。严禁以任何方式未经授权复制、租借、销售、购买、分发、上传和/或下载本软件/手册。Microsoft、Microsoft Flight Simulator、Windows、Windows Vista 和 DirectX 是 Microsoft Corporation 的注册商标或商标。Adobe 和 Adobe Reader 是 Adobe Systems Incorporated 的注册商标或商标。本文提及的其他公司或产品名称可能是其各自所有者的商标或注册商标。本文档中出现的所有图像均为 Xtreme Prototypes X-1 SG 虚拟飞机的实际屏幕截图以及在 Microsoft ® Flight Simulator X 中捕获的面板,除非另有说明。本手册的部分内容灵感或改编自美国空军和贝尔飞机公司于 20 世纪 50 年代出版的原始“贝尔 X-1A、B & D 飞行员飞行操作手册”。本手册不再保密,属于公共领域。Xtreme Proto-types 与 NASA、贝尔飞机公司(现为贝尔直升机德事隆公司)、美国空军或与 X-1 研究计划相关的任何其他公司、实体或政府组织均无关联。软件平台徽标 (TM 和 ©) IEMA 2007。本产品未获得 NASA 赞助或认可。
与其他复合物分子一样,DNA由称为核苷酸的构件组成,它们将其链接在一起形成长链。每个链都包含一个确定其特征的特定核苷酸序列。DNA中核苷酸的序列携带并保留细胞内的遗传信息。现在,我们将研究DNA如何使用自己的序列来指导其合成以及RNA和蛋白质的创建,最终产生具有不同结构和功能的产品。在本节中,我们将探讨DNA的基本结构和功能。核酸的成分称为核苷酸。构成DNA的核苷酸被称为脱氧核糖核苷酸。每个脱氧核糖核苷酸都由一种称为脱氧核糖的五碳糖组成,一个磷酸基团和一个氮基碱,具有负责核酸链之间配对的环结构。五碳脱氧核糖分子中的碳原子的编号为1ʹ至5ʹ。DNA由两种类型的氮基组成:嘌呤和嘧啶。嘌呤,腺嘌呤(A)和鸟嘌呤(G)具有双环结构,并将六个碳环融合在一起。
摘要 本文将介绍韩国航空宇宙研究院经济实惠且环保的太空运输计划所采用的增材制造液体火箭发动机部件,并介绍推力室和其他部件的当前发展状况。已采用增材制造技术制造了多个推力室部件,即激光粉末床熔合 (L-PBF) 和粉末定向能量沉积 (p-DED),L-PBF 的材料为纯铜、Inconel718 和 CuCrZr,p-DED 的材料为铝青铜和 Inconel 625。并对制造的推力室进行了点火试验。用于 30 kN 推力液体火箭发动机的涡轮泵也正在设计和计划通过增材制造进行制造。此外,还评估和验证了增材制造对发动机喷嘴延伸、高压容器、热交换器和推力框架的可行性和适用性。
最初的技术目标和里程碑未能实现。值得注意的是,热交换器技术开发计划 (HTX) 实现了通过几项关键设计评审和测试的目标。在 RE 专门建造的高超音速地面测试设施上进行的成功测试活动使预冷器能够在 5 马赫条件下进行多次测试。这是世界首创,代表着在展示和降低 SABRE 发动机关键元件风险方面迈出了重要一步。DEMO-A 项目实现了其所有关键设计成熟度目标,同时还对一些子系统进行了小规模测试,重点关注 RE 提供的关键子系统。虽然重新调整的第三阶段计划目标未能实现,即实现 DEMO-A 和测试设施的测试准备就绪,但研究小组发现,迄今为止取得的成就与最初的 2015 GFA 意图基本一致,即通过关键设计关键点 (CDKP) 和关键设计评审 (CDR) 推进演示发动机。看来,在项目调整期间,雄心有所增长,将主要目标从 CDR 提升到测试准备就绪。此外,在项目内进行的缩放子系统测试以及目前正在进行的全尺寸子系统和耦合子系统测试,代表着在验证设计方面迈出了重要一步。要成功进入 SABRE 开发的下一阶段,需要测试与 DEMO-A 相关的更多组件和系统。