为了更好地了解北美和非洲山相关啮齿动物的高海拔高度(海拔3000 m)的功能形态适应,我们使用Microct扫描来获取3D图像和3D形态计量方法来计算内骨体积和颅内长度。这是对北美克里西特小鼠物种的113个低海拔和高海拔种群(两种peromyscus物种,n = 53),以及两个部落的非洲沼泽啮齿动物(五种,五个物种,n = 49)和protaomyini(四种,n = 11)。我们检验了两个不同的假设,即高海拔种群如何在高海拔种群中有所不同:昂贵的组织假设,该假设预测大脑和内部的体积将减少以降低大脑增长和维持大脑的成本;以及脑海中的假设,该假设预测,将作为直接表型效应或适应可容纳大脑肿胀并从而最大程度地减少高度疾病的病理症状的适应性。在校正了颅尺寸的一般异态变化后,我们发现在北美的peromyscus小鼠和非洲层压板(Otomys)大鼠中,高地啮齿动物的核心体积比低较低的啮齿动物较小,与昂贵的组织假设一致。在前组中,peromyscus小鼠,不仅是从高海拔和低海拔的野生捕获的小鼠中获得的,而且还从那些在普通园生实验室条件下从高度或低海拔捕获的父母中获得了颅骨。我们在这些小鼠中的结果表明,脑大小对升高的反应可能具有强大的遗传基础,这反应了相反但对脑量的较弱的影响。这些结果可能表明,选择可以在高海拔高度下减少小型哺乳动物的大脑体积,但是需要进一步的实验来评估该结论的一般性和潜在机制的性质。
沉浸式虚拟现实 (VR) 环境是探索认知过程(从记忆和导航到视觉处理和决策)的强大工具,并且可在自然但受控的环境中进行。因此,它们已被用于不同物种和各种研究小组。不幸的是,在这样的环境中设计和执行行为任务通常很复杂。为了应对这一挑战,我们创建了 DomeVR,这是一个使用虚幻引擎 4 (UE4) 构建的沉浸式 VR 环境。UE4 是一个功能强大的游戏引擎,支持照片级逼真的图形,并包含专为非程序员设计的可视化脚本语言。因此,可以使用拖放元素轻松创建虚拟环境。DomeVR 旨在使这些功能可用于神经科学实验。这包括一个日志记录和同步系统,用于解决 UE4 固有的时间不确定性;一个交互式 GUI,供科学家在实验期间观察受试者并动态调整任务参数,以及一个圆顶投影系统,用于在非人类受试者中实现完全任务沉浸。这些关键功能是模块化的,可以轻松单独添加到其他 UE4 项目中。最后,我们提供了原理验证数据,重点介绍了 DomeVR 在三个不同物种(人类、猕猴和老鼠)中的功能。
小型啮齿动物会给农场带来问题,例如基础设施损坏、农作物损失或病原体传播。后者对人类和牲畜都构成威胁。野生啮齿动物和牲畜之间的频繁接触有利于病原体传播,因此了解小型哺乳动物的运动模式对于制定预防损害和健康问题的策略非常重要。微型近距离记录器是一种新开发的用于监测小型哺乳动物空间行为的工具。蓝牙低功耗 (BLE) 信号的强度可用作野生啮齿动物与牲畜饲养地点密切接触的指标,这对于识别可能的传播途径很重要。该方法研究侧重于该技术在农业环境中的使用以及在用于畜牧业的农业环境中测试和校准该技术的试运行。结果表明,记录器的电池寿命主要受预设扫描间隔的影响。短扫描间隔会导致电池寿命缩短,应根据目标物种的活动模式最大化。栖息地会影响 BLE 信号强度,导致室内信号强度高于室外。记录器位置的高度对牲畜圈内的信号强度有积极影响。信号接收通常随着距离的增加而减小,并且不同记录器的信号接收也不同,因此需要进行校准。在特定栖息地的距离内,BLE 近距离记录系统可以识别小型哺乳动物之间以及动物与特定结构之间的接触。这些结果支持在畜牧业环境中使用基于 BLE 的系统,并为经过验证的技术提供了大量证据。此外,这种方法可以为可能的病原体传播途径提供有价值的见解。
针对小鼠和大鼠基因分型的组织收集指南的目的:遗传修饰的啮齿动物的正确遗传鉴定对于研究的效率和可重复性以及减少研究项目中涉及的动物的数量至关重要。基因型最常通过对年轻啮齿动物组织提取的DNA的分析来确定。从历史上看,组织活检(例如,Pinna,尾巴和远端的Phalanx)一直是使用的最常见方法,但是必须仔细执行活检,因为它们有可能导致某种程度的疼痛和/或困扰(1-3)。已经描述了使用毛囊,血液,粪便,眼泪样本或口服拭子的其他侵入性较小但技术上更具挑战性的测试方法(1,4-15)。研究人员应使用对其研究实用的侵入性最少的方法,并应收集可靠结果所需的最小样本。及时收集和分析组织可以在断奶前确定所需的小鼠/大鼠,并将促进更有效地使用笼子空间。首席调查员必须确保对执行这些技术程序的个人进行足够的培训。进行基因分型的样本收集时,应考虑以下准则,以最大程度地降低交叉污染的风险并确保使用高质量的DNA样品来产生准确的结果:
可以考虑使用其他方法来接触香烟烟雾成分,例如通过鼻腔内给药香烟烟雾溶液(Ueha 等人,2020 年)。在用于呼吸系统疾病研究的非动物替代方法中,重现体内人类肺部状况的复杂方法已经取得了重大进展,包括体外 2D 和 3D 培养、离体组织培养、类器官、肺芯片、精密切割肺切片 (PCLS) 模型以及计算机模拟和数学方法(Hynes 等人,2020 年;Fröhlich,2021 年)。如果不用于完全取代动物模型,研究人员应考虑使用细胞模型和计算机模拟技术取得的进展,以减少动物的使用程度。
开发有效治疗神经退行性疾病的一个关键局限性是缺乏准确模仿人类疾病的复杂物理学的模型。人类会随着年龄的增长而积累的神经元内神经元的色素神经素,从而合成儿茶酚胺。神经元达到最高神经元素水平的神经元在parkinson,阿尔茨海默氏症和显然健康的衰老个体中优先退化。然而,在当前动物模型中未考虑这种大脑色素,因为啮齿动物等常见的实验室物种不会产生神经念珠菌。在这里,我们生成一种被称为TGNM的组织特异性的转基因小鼠,该小鼠模仿了基于组成型儿茶酚胺特异性表达人类糖果蛋白 - 生物糖蛋白酶蛋白酶酶的蛋白酶酶的表达,从而模仿了cantecholamineragramagic neuromelanin的人类依赖性脑部范围的分布。我们表明,与渐进性人类神经元素色素沉着平行,这些动物表现出与年龄相关的神经元功能障碍和变性,影响了许多脑回路和身体组织,与运动和非运动和非运动型呈现有关,让人想起早期神经变性阶段。该模型可以帮助探索大脑衰老和神经变性的新研究途径。
摘要 - 野生啮齿动物是各种人类病原体的关键携带者,包括胚泡属。我们的研究旨在评估内蒙古自动地区和中国骗子的野生啮齿动物中胚泡的流行和遗传特征。从2023年11月至2024年2月,在这些地区捕获了486个啮齿动物。新鲜的粪便,以分离脊椎动物细胞色素B(CYTB)基因的DNA和PCR扩增,以鉴定啮齿动物。随后,利用核糖体RNA(RRNA)基因的部分小亚基的PCR分析和测序来检测所有粪便样品中的胚泡。发现27.4%(133/486)为胚泡阳性。结果表明,在拉特斯·诺维古斯(Rattus Norvegicus)中感染了四种感染胚泡的啮齿动物,32.3%(63/195),在Mus musculus中为15.1%(16/106),20.2%(18/89)在Apodemus agrarius in Apodemus agrarius,以及37.5%(37.5%)(36/96/96/96)中。序列分析确立了五个胚泡亚型的存在:ST1(n = 4),ST2(n = 2),ST4(n = 125,主要的亚型),ST10(n = 1)和新的ST(n = 1)。识别的人畜共患亚型(ST1,ST2,ST4和ST10)突出了野生啮齿动物在胚泡向人类传播中所起的可利用作用,从而提高了人类感染的机会。同时,新序列的发现还为该寄生虫的遗传多样性提供了新的见解。
令人惊讶的是,经过一个多世纪的使用,将啮齿动物用于科学研究,对于小鼠或大鼠变成成人的何时,没有明确,共识或一致的定义。具体而言,在成年海马神经发生的领域,该概念是中心的,有一种趋势要考虑到青春期标志着成年的开始,并且并不罕见地发现30天老鼠被描述为成人。但是,正如其他人前面讨论的那样,这意味着在这种特征的感知重要性上存在重要的偏见,因为功能研究通常是在很小的年龄进行的,当时神经发生峰值,无视中年和老动物,而中等古老的动物几乎没有新产生的新神经元。在本专题文章中,我们详细介绍了这些问题,并认为过去30年中有关小鼠和大鼠产后发育的研究允许建立一个青春期,以标志着成年的过渡,就像其他哺乳动物一样。大鼠和小鼠的青春期均在产后第60天结束,因此,这个年龄可以视为两种物种的成年开始。尽管如此,由于环境和社会状况,要考虑到成熟的个体间,相互应变的差异,如杰克逊实验室所建议的那样,三个月大的年龄可能是考虑小鼠和大鼠的善意成年人的一个更安全的选择。
1 加拿大魁北克省蒙特利尔麦吉尔大学神经科学综合项目; 2 加拿大魁北克省蒙特利尔麦吉尔大学 Ludmer 神经信息学和心理健康中心; 3 加拿大魁北克省蒙特利尔麦吉尔大学道格拉斯心理健康大学研究所; 4 美国新泽西州新不伦瑞克罗格斯大学细胞生物学和神经科学系; 5 加拿大魁北克省蒙特利尔麦吉尔大学精神病学系; 6 巴西阿雷格里港南里奥格兰德联邦大学医学院儿童和青少年健康研究生课程; 7 巴西阿雷格里港南里奥格兰德联邦大学基础健康科学研究所神经科学研究生课程; 8 巴西阿雷格里港南里奥格兰德联邦大学医学院精神病学和行为科学研究生课程和 9 加拿大魁北克省蒙特利尔麦吉尔大学神经病学和神经外科系
✉ 通信和材料索取请发送至 Lan Luan 或 Chong Xie。lan.luan@rice.edu;chongxie@rice.edu。作者贡献 CX 构思并组织了整个研究;ZZ、HZ、XL、LL 和 CX 设计了实验,所有作者均参与其中;ZZ 和 XL 在 CX 的监督下设计和制作了 NET 设备;DFL、JEC 和 LF 与 SpikeGadgets LLC 合作设计了堆叠头戴式记录系统;ZZ 和 XL 在 JEC 和 DFL 的帮助以及 CX 和 LF 的监督下设计了 NET 探头与头戴式记录系统的集成;ZZ 和 XL 在 CX 的监督下开发并执行了手术程序;ZZ、XL 和 HZ 在 LS 和 FH 的帮助以及 CX 和 LL 的监督下进行了动物神经记录实验; HZ 和 ZZ 开发并实施了数据预处理,由 CX 监督,并得到了 JEC 和 LF 的意见;ZZ 和 HZ 执行了数据后分析,由 LL 和 CX 监督,并得到了 LF 的意见;ZZ 执行了组织学研究,由 CX 监督;ZZ、LL 和 CX 撰写并修改了手稿,得到了所有作者的意见。
