抽象的语法校正校正(GEC)工具,由先进的生成人工智能(AI)提供动力,在用户输入中有效地纠正了语言的不准确性。但是,它们通常在提供基本的自然语言解释方面缺乏,这些解释是学习语言并获得对语法规则的更深入的理解。在低资源语言(例如孟加拉语)中对这些工具的探索有限。在这样的语言中,革命错误说明(GEE)系统不仅应正确句子,而且还应提供错误的解释。这种综合方法可以帮助语言学习者寻求提高能力。我们的工作介绍了一个现实世界中的多域数据集,该数据集来自孟加拉语扬声器,具有不同的义务水平和语言复杂性。此数据集可作为GEE系统的评估基准标记,允许他们使用上下文信息来生成有意义的解释和高质量的更正。Various generative pre-trained large language models (LLMs), in- cluding GPT-4 Turbo, GPT-3.5 Turbo, Text-davinci-003, Text-babbage- 001, Text-curie-001, Text-ada-001, Llama-2-7b, Llama-2-13b, and Llama-2-70b, are assessed against human experts for performance comparison.我们的研究强调了自动部署孟加拉人GEE的当前最新生成预培训的LLM的局限性。主张进行人干预,我们的发现提议合并手动检查以解决语法错误并提高反馈质量。这种方法提出了一种更合适的策略,以重新确定孟加拉语的GEC工具,并阐明了语言学习的教育方面。
摘要:与大规模硅制造兼容的硅光子学是一个破坏性的光子平台,表明对行业和研究领域(例如量子,神经形态计算,LIDAR)具有重要意义。尖端应用,例如高容量相干的光学通信和杂差激元,已升级对集成窄线宽激光源的需求。为此,这项工作旨在通过开发高性能混合III-V/硅激光来满足这一要求。开发的集成激光器利用单个微孔谐振器(MRR),演示了超过45 dB的侧模式抑制比(SMSR)的单模操作,激光输出功率高达16.4 mW。远离需要多个复杂控制的当前混合/异质激光体系结构,开发的激光体系结构仅需要两个控制参数。重要的是,这是通过降低表征这些激光器的复杂性来简化工业采用的。通过简洁的结构和控制框架,实现了2.79 kHz的狭窄激光线宽,低相对强度噪声(RIN)达到-135 dB/hz。此外,在测量10 dB的信噪比(SNR)的情况下,证明了12.5 GB/s的光学数据传输。
尽管[插入强迫]对[插入偏置过程]的影响的扩增将发生在数十年的时间尺度上,但与[插入有偏见的过程]本身相关的固有时间尺度通常是在小时的顺序上。因此,原则上应该可以通过在短期天气预测模式下研究此类模型的性能来评估[插入过程]的异常值是否现实。
零噪声外推 (ZNE) 是一种量子经典混合技术。它运行噪声水平不断增加的量子电路,提取每个电路的期望值,然后使用经典拟合外推无噪声环境中的理想期望值。在 Mitiq 的 ZNE 实现中,有两个相关的经典变量:(1) 用于查找 y 截距(理想期望值)的外推或拟合类型和 (2) 噪声缩放值,它们决定了噪声在运行的每个附加电路中如何增长 [3]。
[CryptographiceCeption:不良数据。 ]system.security.cryptography.cryptographicexception.throwcryptographicexception(int32 hr)+43 system.security.cryptography.utils._decryptdata(safekeyhandle hkey hkey hkey,byte,byte,byte,byte []数据paddingMode,boolean fdone)+0 system.security.cryptography.cryptoapitransform.transformfinalblock(byte [byte [] inputBuffer,int32 InputOffset,int32 InputCount,intputcount)+285 +285 Sytem.security.security.cryptosem.cryptograpent EncryptedData,SymmeticalGorithM symmeticalGorithM)+327 Encryption.decryptxml(字符串filepath)在e:\ sites \ retireware.com \ secure \ argustest \ ennity_report.aspx.vb:41 System.Web.ui.control.onload(EventArgs E)+108 System.web.ui.control.control.control.loadRecursive() boolean includeftages afterAsyncpoint)+1533
xr793.org › uploads › 2022/07 › 1988-F... PDF 2022 年 7 月 31 日 — 2022 年 7 月 31 日 发动机和往复式飞机发动机的耐磨性...人体工程学,它开始了很长一段时间在你驾驶方向盘之前。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。
传统镜子在反射时会改变圆偏振光的手性。然而,人们对设计和制造手性保持镜子以及手性反射超表面的需求日益增长,这些镜子的反射光子自旋态可调,可在紫外和可见光域的宽波长范围内工作。到目前为止,大多数手性镜都是通过自上而下的技术制备的,例如电子束光刻,这些技术成本非常高,并且难以扩展到宏观设备。这里介绍了一种有效的自下而上的策略,用于通过使用逐层组装取向银纳米线层来制造手性镜,这些银纳米线层是通过在半反射银层上进行掠入射喷涂制备的。由此产生的手性超表面对紫外、可见光和近红外域中宽波长范围内的圆偏振光显示出结构相关的差分反射率,达到了极高的品质因数。它们的差分反射率可达到最大偏振效率的 95%,且反射光的旋向性部分保留。这些具有可调手性反射率的大面积手性镜在光学、传感和手性光与物质相互作用等各个领域都有着广阔的应用前景。
在发布政策中指定了此版本的手稿的重复使用条款和条件。使用受版权保护的作品需要权利持有人(作者或出版商)的同意。可根据创意共享许可证或发布者的定制许可提供的作品可根据其中包含的条款和条件使用。有关更多信息和条款和条件,请参见编辑网站。此项目是从IrisUniversitàPolitecnicadelle Marche(https://iris.univpm.it)下载的。引用时,请参阅已发布的版本。
关于封装的细胞治疗(ECT)神经技术的ECT平台是一种基于细胞的基因治疗递送系统,旨在提供长期,持续的治疗蛋白递送,用于治疗慢性眼疾病。这个多功能平台由一个含有专有的同种异体视网膜色素上皮细胞(RPE)细胞的小型,可渗透的胶囊组成,该细胞经过基因设计,可生产用于靶向疾病的特定治疗蛋白。囊是手术植入的。到位后,胶囊的半渗透外膜允许必需的营养素进入,同时还可以使治疗蛋白进入眼睛,在那里他们可以前往位于眼睛的视网膜。外膜可保护封装的RPE细胞免受宿主的免疫系统的影响,从而有助于其随着时间的推移的生存和功能。
