摘要:我们在液态氦气温度(T = 2 K)上进行激光光谱,以研究用氢化动力学滴注制造的纳米镜高度的蒽晶体中的掺杂的单二苯甲烷(DBT)分子。使用高分辨率的荧光激发光谱法,我们表明,印刷纳米晶体中单分子的零子线几乎与对散装中同一来宾 - 宿主系统观察到的傅立叶限制过渡一样狭窄。此外,光谱不稳定性可与或小于一个线宽度相当。通过记录DBT分子的超分辨率图像并改变激发梁的极化,我们确定印刷晶体的尺寸和晶体轴的方向。对于一系列应用,有机纳米和微晶的电水动力印刷是感兴趣的,其中希望对具有狭窄光学转变的量子发射器进行对照定位。关键字:纳米折线,纳米晶,量子发射极,单分子,单光子源,光谱M
o 能够设计和实施实验或理论程序来解决学术和工业研究中的问题或改进现有结果 o 能够使用分析和数值数学计算工具 o 学生能够将物理理论应用于分子系统/晶体/生物分子/材料,了解使用计算机模拟分子系统动态的现代方法 软技能 ● 做出明智的判断和选择 o 能够以越来越高的自主性水平工作,包括承担项目规划和管理设施的责任 o 鼓励学生为提出的问题选择个人解决方案,并提出有趣的研究案例,这些案例可以作为考试面试的重要部分。 ● 交流知识和理解 o 能够使用意大利语和英语在物理学的高级领域进行交流 o 懂得如何揭示案例研究的特殊性并提出解决技术,鼓励在课堂上进行讨论 ● 继续学习的能力 o 掌握持续学习和知识更新的基本知识工具 o 知道如何从正式文本中提取真实案例研究的操作信息,使用计算机代码、高级数学技术、人工智能 教学大纲 内容知识 分子建模:经典分子动力学。分子中电子的量子处理。
摘要。在这篇 Outlook 论文中,我们解释了为什么当通过使用系统生理增强功能性近红外光谱 (SPA-fNIRS) 同时测量系统生理活动(例如心肺和自主神经活动)时,可以促进对功能性近红外光谱 (fNIRS) 神经成像信号的准确生理解释。SPA-fNIRS 的基本原理有两个方面:(i) SPA-fNIRS 能够更完整地解释和理解在头部测量的 fNIRS 信号,因为它们包含源自神经血管耦合和系统生理源的成分。用 SPA-fNIRS 测量的全身生理信号可用于回归 fNIRS 信号中的生理混杂成分。因此可以最大限度地减少误解。(ii) SPA-fNIRS 能够通过将大脑与整个身体的生理状态联系起来来研究具身大脑,从而对它们复杂的相互作用产生新的见解。我们预计 SPA-fNIRS 方法在未来将变得越来越重要。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。全部或部分分发或复制本作品需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.9.3.030801]
消费级神经技术产品已经问世几十年了。这些产品中的大多数都基于脑电图 (EEG),而脑电图 (EEG) 是一项对噪声敏感的技术。另一种选择是功能性近红外光谱 (fNIRS),这是一种不断发展的神经成像技术,能够实时测量大脑的血流动力学活动。FNIRS 已成功通过功能性磁共振成像 (fMRI) 验证。最近,瑞典公司 Mendi 推出了一款微型无线消费级 fNIRS。本研究旨在比较 Mendi fNIRS 与成熟的实验室 fNIRS 设备对大脑活动的测量结果。19 名参与者(年龄 18-53 岁)进行了两次 Stroop 测试,同时测量了额极(布罗德曼 10 区)的氧合情况。首先,在实验室环境中使用 Biopac 的 fNIRS 设备进行测试,几周后,在家庭环境中使用 Mendi 设备重复该测试。对数据的初步分析显示,两种设备的测量结果具有良好的一致性。在群体层面,相关性为 0.81。这些中期结果需要通过更可靠的分析和后续研究来证实,但 Mendi 设备有望在群体层面提供有效的大脑活动测量,并且该设备很可能用于实验室外的研究。
量子逻辑光谱 (QLS) 可用于缺乏合适电子能级结构来直接执行这些任务的原子和分子离子种类的内部状态制备和读出[1 – 4]。原则上,通过使用“逻辑离子”(LI) 及其与共捕获的“光谱离子”(SI) 的运动耦合,QLS 可以控制任何离子种类。如参考文献 [1] 中所述,传统 QLS 协议有两个主要局限性。首先,它要求将离子冷却到接近运动基态。其次,它的读出效率与 SI 的数量关系不大,这可能会阻碍将量子逻辑原子钟扩展到多个离子所带来的更高的稳定性[5]。已经开发出使用重复量子非破坏 (QND) 测量来减轻这些影响的方法[6 – 8]。然而,由于电子结构不合适,应用它们可能不可行,重复测量会降低光谱探针的占空比。在这里,我们演示了文献 [9] 中基于几何相位门提出的 QLS 方法
不均匀性对量子材料的特性至关重要,但是可以测量它们的方法仍然有限,并且只能访问相关可观察的一小部分。例如,诸如扫描隧道显微镜之类的局部探针已经证明,在纳米长度尺度上,丘比特超导体的电子特性是不均匀的。但是,需要解决高阶相关性的互补技术以阐明这些不均匀性的性质。此外,局部隧道探针通常仅远低于临界温度。在这里,我们开发了一种二维的Terahertz光谱法,以测量来自近乎掺杂的丘陵中层间间的隧道共振的Josephson等离子体回声。这项技术使我们能够研究材料中层偶联的多维光学响应,并从外部无均匀的无均匀宽扩展中拓宽了材料中的固有寿命扩大,以实现中间层间隧道隧道。我们发现,不均匀的扩展持续到临界温度的很大一部分,而这在高于热量增加的寿命拓宽之上可以克服。
nist.gov › 文档 PDF 2022年12月24日 — 2022年12月24日 使用现有技术并促进工业和工业领域的技术创新... 标准参考材料的研究领域很广泛。
在多个量子位上表现出显着的时间和空间相关性的噪声可能对易于断层的量子计算和量子增强的计量学尤其有害。然而,到目前为止,尚未报道对即使是两数量子系统的噪声环境的完整频谱表征。我们提出并在实验上证明了基于连续控制调制的两量偏角噪声光谱的方案。通过将自旋锁定松弛度的思想与统计动机的稳健估计方法相结合,我们的协议允许同时重建所有单量和两倍的互相关光谱,包括访问其独特的非分类特征。仅采用单一QUIT控制操作和状态训练测量,而不需要纠缠状态的准备或读取两量点的可观察物。我们的实验演示使用了两个与共享的彩色工程噪声源相连的超导码位,但我们的方法可移植到各种dephasing主导的Qubit架构上。通过将量子噪声光谱推向单量环境,我们的工作预示着工程和自然发生的噪声环境中时空相关的特征。
根据古代著作,大多数原始人都将疾病视为邪恶的工作或来自超自然力量的作品。希波克拉底(公元前460-370)开始了从神秘仪式转变为一种实用方法。Marcus Terentius Varro(公元前117 - 26年)提出了一种细菌理论,说:“小动物,眼睛看不见,充满大气并通过鼻子呼吸引起危险疾病。” 17世纪的解剖学,生理学和医学仪器的进步包括1683年由Antonie van Leeuwenhoek开发显微镜,允许研究细菌。在18世纪,对手术和解剖结构的研究继续进行。在1850年代,巴斯德证明,发酵,腐烂,感染和酸是由微生物的生长引起的。约瑟夫·李斯特勋爵(Lord Joseph Lister)是成功地确定对手术感染的影响的人。lister认为,如果他可以防止空气传播的微生物进入伤口,就可以预防感染。当德国细菌学家罗伯特·科赫(Robert Koch)引入蒸汽灭菌方法并开发出第一个非压力流动的蒸汽消毒器时,从1881年到1882年的无菌技术进一步进步。