轮换项目名称 使用 100 万个可诱导 DNA 条形码进行原位谱系追踪实验室主任 (PI) 姓名 Jamie Blundell 第二位指导老师(如适用) N/A 项目早期检测指导老师电子邮件 jrb75@cam.ac.uk 实验室位置 哈奇森 MRC 研究中心项目概要目的和目标维持血液、皮肤、肠道和其他组织的干细胞处于不断更新的状态,从而积累基因改变,其中一些导致克隆扩增和癌症 [1]。理解这一点需要能够测量组织维持期间发生的群体动态。在此,我们建议构建一个原位谱系追踪工具,该工具可以诱导生成数百万个 DNA 条形码组合,从而允许人们使用下一代测序以精确度并行追踪数百万个细胞谱系。与以前的半定量方法 [2] 不同,这项技术将能够定量追踪与体内组织维持相关的克隆动态,并深入了解如何实现体内平衡以及它在癌症早期阶段如何崩溃。我们之前在酿酒酵母中的工作已经证明,基于 cre-lox 系统的位点特异性 DNA 条形码和谱系动态的定量追踪可用于深入了解突变如何在大量细胞群体中产生、扩展和竞争 [3]。我们与长期合作伙伴 Sasha Levy 进一步开发了这项技术,现在可以原位生成条形码多样性,而无需转化质粒文库。这项改进的技术将利用 3 个串联 loxP“着陆垫”,每个“着陆垫”(在 Cre 诱导后)可以不可逆地整合存储在基因组其他地方的三个独立串联阵列中的约 100 个独特条形码序列中的一个。对于这个 MRes 轮换项目,我们计划扩大这项技术的规模,以在酵母中稳健地生成 100 万个独特的条形码组合。这将证明该技术能够以单细胞精度追踪体内细胞谱系,从而为干细胞生物学和癌症发病中的主要未解问题提供参考。实验计划 学生将首先构建由 loxP 位点分隔的约 100 个条形码组成的长串联阵列构建体,并使用标准同源重组将此构建体整合到已包含 cre-lox 着陆垫的酵母菌株的基因组中。然后,学生将研究此构建体可诱导的条形码多样性如何取决于串联阵列的诱导条件和基因组位置。优化后,学生将整合另外两个串联阵列,并尝试实现超过 100 万个独特条形码的多样性,将使用定制设计的 2 步 PCR 协议进行仔细量化,该协议使用唯一分子标识符 (UMI) 来标记单个 DNA 分子。
env -1540地质和环境危害 - 丹佛和附近提供2024年春季,2026年,环境抽样和分析,提供了2023年秋季2023,2024,2025,2025,2026,2024,2024,2024,2024,2025 Enk -3010应用于春季的每位Spring et -3250 springs springs springs of Springs springs springs springs springs springs springs springs springs springs springs springs springs springs springs springs springs springs springs springs springs 324 springs 24 Ecological Restoration Offered Every Fall ENV‐3340 Climate Change Science Offered Fall 2023, 2024, Spring 2026 ENV‐3400 Water Resources Offered Every Spring ENV‐3420 Soil Resources Offered Every Fall and Spring ENV‐3422 Methods of Soil Analysis and Sampling Offered Every Fall and Spring ENV‐3440 Energy and Mineral Resources Offered Fall 2024, 2026 ENV‐3540 Advanced Geologic and Environmental Hazards – Denver and附近提供2024年春季,2026 ENV -3620人口,资源和土地使用,每年春季Env -3700山区环境提供的每年春季Env -3710提供的环境补救措施提供了2025年春季2025,2026 ENV -3720的废物管理,每个秋季Enk -3740提供的环境健康提供了每一个秋季环境卫生,提供了2024年春季顾问,及2025年秋季Environicity and 2025,2025,2025,2026,Envimology and 2026 770 ENV‐3920 Directed Study in Environmental Science Offered as needed, see faculty you wish to work with ENV‐4000 Geologic Hazards Offered Fall 2023, 2025 ENV‐4150 Hydrology (Surface Water) Offered Spring 2025, 2027 ENV‐4200 Environmental Policy and Planning Offered every fall and spring ENV‐4250 Hydrogeology (Groundwater) Offered Spring 2024, 2026 ENV‐4420 Wetlands Offered Every秋季Env -4430栖息地计划提供了2024年春季,2026 ENV -4440林科学提供了2023年秋季,2025 ENV -4460高级水质分析提供了2023年秋季2023,2025
ISSN 1400-5719 报告 RL 2005:20e 2003 年 12 月 7 日,瑞典 O 县哥德堡/兰德维特机场发生 LN-RPL 飞机事故 案件 L-59/03 SHK 调查与安全有关的事故和事件。调查的目的是防止将来发生类似事件。调查的目的不是追究责任。本报告中的材料可以免费复制用于出版或其他目的,但必须注明出处。该报告也可在我们的网站 www.havkom.se 上查阅。应瑞典事故调查委员会的要求,由 Tim Crosfield, M.A. 从瑞典语原文翻译而来。如果英文与瑞典语文本之间存在差异,则以瑞典语文本为准。
投资涉及风险。本金可能损失。本基金采用积极管理方式,力求利用基于规则的投资流程提供超过标准普尔全球 BMI 的超额回报。无法保证本基金的投资目标一定会实现。本基金力求通过确定显示最强价格动量指标的全球股票市场部分来实现其投资目标,如下所述。根据其投资策略,本基金将投资于股票证券,其中包括直接投资于美国和非美国上市的普通股和存托凭证。本基金对非美国上市证券的直接投资可能以外币计价。本基金还可以购买利用美国存托凭证(“ADR”)或全球存托凭证(“GDR”)的非美国公司的股票证券。存托凭证(例如 ADR 或 GDR)可能会面临直接投资外国公司证券的某些风险,例如货币、政治、经济和市场风险,因为它们的价值取决于非美元计价的外国基础证券的表现。动量投资强调投资于近期表现优于其他证券的证券,因为这些证券的价值将继续上涨。之前表现出相对较高动量特征的证券可能不会经历正动量,或者可能比整个市场波动更大。高动量也可能表明证券价格已达到峰值,因此此类证券的回报可能低于其他投资方式的回报。基金和市场的表现
Faraday旋转是固体,液体和气体的磁光反应中的基本效应。具有较大Verdet常数的材料在光学调节器,传感器和非转录器件(例如光学隔离器)中应用。在这里,我们证明了光的极化平面在中等磁力的HBN封装的WSE 2和Mose 2的HBN封装的单层中表现出巨大的法拉第旋转,在A激子转变周围表现出了几个度的巨大旋转。对于可见性方案中的任何材料,这将导致最高已知的VERDET常数为-1.9×10 7 deg T -1 cm -1。此外,与单层相比,HBN封装的双层MOS 2中的层间激子具有相反的符号的大型Verdet常数(VIL≈+2×10 5 deg T-1 cm-2)。巨大的法拉第旋转是由于原子较薄的半导体过渡金属二进制基因源中的巨大振荡器强度和激子的高g因子。我们推断出HBN封装的WSE 2和Mose 2单层的完全平面内复合物介电张量,这对于2D异质结构的Kerr,Faraday和Magneto-Circular二分法谱的预测至关重要。我们的结果在超薄光学极化设备中的二维材料的潜在使用中提出了至关重要的进步。
光子平台是量子技术的绝佳环境,因为弱的光子与环境耦合可以确保较长的相干时间。量子光子学的第二个关键因素是光子之间的相互作用,这可以通过交叉相位调制 (XPM) 形式的光学非线性提供。这种方法支撑了量子光学 1 – 7 和信息处理 8 中的许多拟议应用,但要发挥其潜力,需要强的单光子级非线性相移以及可扩展的非线性元件。在这项工作中,我们表明所需的非线性可以由嵌入量子阱的微柱中的激子极化子提供。它们将激子的强相互作用 9、10 与微米级发射器的可扩展性结合起来。11。使用衰减到单光子平均强度以下的激光束,我们观察到每个极化子的 XPM 高达 3±1 mrad。以我们的工作为第一步,我们为极化子晶格中的量子信息处理铺平了道路。XPM 的量子应用包括远距传物 1 、光子数检测 2 、计量学 4 、密码学 5 和量子信息处理 (QIP),其中它被提议作为电路 6 和测量 7 的途径
Youguo Shi 4 , Jiaqiang Yan 5 , David H. Cobden 2 , Wei-Tao Liu 1 , Xiaodong Xu 2,6 , Shiwei Wu 1,7,8,9*
运动的心理意象是一项潜在的有价值的康复任务,但其治疗性效率可能取决于采用的特定认知策略。个人使用两种主要策略来执行手动旋转任务(HMRT),其中涉及确定视觉图像是描绘左手还是右手。是运动图像(MI)策略,其中涉及在心理上模拟自己的手动作。在这种情况下,通过响应时间(RT)衡量的任务性能会受到内侧效果的影响,其中当纤维固定在内侧定向时,降低了RT,可能是因为实际运动更容易。另一种策略是采用视觉图像(VI),该图像涉及在精神上旋转图片,并且不受这种内侧效果的影响。HMRT的康复性益处被认为取决于MI策略(心理实践),因此必须检查单个因素,例如年龄,图像观点(例如,手掌或手掌)和先天能力(由基线RT指示)等个体因素的影响。出现手掌的图片时,本研究中的所有受试者均使用MI策略,无论年龄和能力如何。相比之下,当对受试者的手背图片呈现时,无论表现如何,VI策略在年轻人组中占主导地位,而中年和老年人组使用的策略取决于绩效能力。在中年龄和老年人组中,VI方法在具有高性能技能的人中占主导地位,而MI策略则占据了低性能技能的人。因此,高技能中年和老年人不一定在HMRT期间形成动作图像,可能会限制康复效率。
光子平台是量子技术的绝佳环境,因为弱光子环境耦合可确保长时间的连贯时间。Quantu-Photonics的第二个关键成分是光子之间的相互作用,可以通过光学非线性以跨相调节(XPM)形式提供。这种方法为量子光学1 - 12中的许多提议的应用和信息处理13,14提供了基础,但是实现其潜力需要强大的单光子级非线性相移以及可扩展的非线性元件。在这项工作中,我们表明,具有嵌入式量子孔的微柱中的激子 - 孔子可以提供所需的非线性。这些结合了激子15、16的强相互作用与微米大小的发射器的可伸缩性。17 - 19。,我们使用衰减至单个光子平均强度的激光梁观察到每个粒子的XPM高达3±1 mrad。我们的工作是第一个垫脚石,我们放下了一条途径,以在极化晶格中进行量子信息处理。XPM的量子应用包括传送1,光子数检测2,计量学6、7,密码8和量子信息处理(QIP)(QIP),在其中提议将其作为通往电路9的途径-10
Cardiovascular System Cardiomyopathy: Dilated, Hypertrophic, Restrictive, Stress Conduction disorders/dysrhythmias: Atrial fibrillation, Atrial flutter, Atrial tachycardia, Atrioventricular block, Bradycardia, Bundle branch block, Idioventricular rhythm, Junctional, Premature contractions, QT prolongation, Sick sinus syndrome, Sinus arrhythmia, Torsades de pointes, Ventricular fibrillation, Ventricular tachycardia Congenital heart disease: Atrial septal defect, Coarctation of aorta, Patent ductus arteriosus, Tetralogy of Fallot, Transposition of the great vessels, Ventricular septal defect Coronary artery disease: Acute myocardial infarction, Angina pectoris, Non–ST-segment elevation myocardial infarction, ST-segment elevation myocardial infarction, Unstable angina, Atherosclerosis Heart failure Hypertension: Primary hypertension, Secondary hypertension, Hypertensive emergencies, Hypotension: Orthostatic hypotension, Vasovagal hypotension Lipid disorder Shock: Cardiogenic, Distributive, Hypovolemic, Obstructive Traumatic, infectious, and inflammatory heart conditions: Cardiac tamponade, Infective endocarditis, Myocarditis, Pericardial effusion, Pericarditis Valvular disorders: Aortic, Mitral, Pulmonary, Tricuspid Vascular disease: Aortic aneurysm/dissection, Arterial embolism/thrombosis, Arteriovenous malformation, Deep vein thrombosis, Giant cell arteritis, Peripheral artery疾病,静脉炎/血栓性静脉曲张,静脉曲张,静脉功能不全