摘要 . 声流体技术结合了声学和微流体技术,为操纵细胞和液体提供了一种独特的方法,广泛应用于生物医学和转化医学。然而,由于多种因素,包括设备间差异、手动操作、环境因素、样品差异等,标准化和保持当前声流体设备和系统的优异性能具有挑战性。在此,为了应对这些挑战,我们提出了“智能声流体技术”——一种涉及声流体设备设计、传感器融合和智能控制器集成的自动化系统。作为概念验证,我们开发了基于智能声流体技术的微型生物反应器,用于人脑类器官培养。我们的微型生物反应器由三个组件组成:(1)通过声螺旋相涡旋方法进行非接触式旋转操作的转子,(2)用于实时跟踪旋转动作的摄像头,以及(3)基于强化学习的控制器,用于闭环调节旋转操作。在模拟和实验环境中训练基于强化学习的控制器后,我们的微型生物反应器可以实现转子在孔板中的自动旋转。重要的是,我们的微型生物反应器可以实现对转子的旋转模式、方向和速度的出色控制,而不受转子重量、液体体积和工作温度波动的影响。此外,我们证明了我们的微型生物反应器可以在长期培养过程中稳定地保持脑类器官的转速,并增强脑类器官的神经分化和均匀性。与目前的声流体相比,我们的智能系统在自动化、稳健性和准确性方面具有卓越的性能,凸显了新型智能系统在生物电子学和微流体实验中的潜力。
我们根据使用正交测试设计的CFD仿真,研究了ALN生长的高温MOCVD(HT-MOCVD)数值模型的过程参数。据信,高温生长条件有利于提高ALN膜的效率和结晶质量,而HT-MOCVD反应器中的流场与过程参数密切相关,这将影响膜的均匀性。建立了一个独立开发的概念HT-MOCVD反应器,以进行ALN生长以进行CFD模拟。为了系统地和有效地评估参数在生长均匀性上的作用,使用正交测试设计分析了基于CFD模拟的过程参数。The advantages of the range, matrix and variance methods were considered and the results were analyzed comprehensively and the optimal process parameters were obtained as follows, susceptor rotational speed 400 rpm, operating pressure 40 Torr, gas flow rate 50 slm, substrate temperature 1550 K.
To: All Pharmacy Staff (Trust and ENHPharma), Paediatric Medical and Nursing Staff (Matron to escalate to A&E Paeds, Bluebell Ward, Bramble Day Unit and Day Surgery) From: Kiani Patel, Specialist Rotational Pharmacist and Lisa Summers, Lead Pharmacist Paediatrics Date: 18 July 2023 Subject: Changes to Proton Pump Inhibitor (PPI) Choices and Formulations for小儿患者兰索拉唑现在是信托中儿科患者使用的第一行PPI。应考虑每个患者的剂量,吞咽能力和给药途径,应选择特定的兰索拉唑配方。奥美拉唑在信托内的小儿患者中使用。请按照以下选项进行兰索拉唑的处方和管理:
对头部、颈部或面部造成严重的生物力学影响(Pieter 等人,2012 年)。一些与格斗运动和武术中头部损伤和运动相关脑震荡的生物力学相关的现代研究为头部损伤的机制提供了见解(Fife,2010 年)。研究发现,脑损伤是由头部和颈部的线性和旋转加速度引起的(Schmitt、Niederer、Muser 和 Walz,2019 年)。此外,已经确定冲击力参数是造成颅骨损伤的原因7。旋转加速度被认为会造成局灶性和弥漫性脑损伤,而线性加速度会造成局灶性脑损伤(Schmitt 等人,2019 年)。HIC 和韦恩州耐受曲线显示的大多数头部损伤的性质都可以由这些加速度来解释(Schmitt 等人,2019 年)。 Boroushak 等人指出,4656 中的旋转加速度和线性加速度
摘要:开发了一种计算上可承受的方法来预测空间中大分子(如多环芳烃)碰撞猝灭和激发的截面和速率系数。应用了混合量子/经典非弹性散射理论 (MQCT),其中分子内部状态之间的量子态到态跃迁使用时间相关薛定谔方程来描述,而碰撞伙伴的散射则使用经典的平均场轨迹来描述。为了进一步提高数值性能,实施了运动方程的解耦方案和初始条件的蒙特卡罗采样。该方法用于计算苯分子 (C 6 H 6 ) 与广泛能量范围内的 He 原子碰撞时旋转激发和猝灭的截面,使用高达 j = 60 的非常大的旋转本征态基组,以及接近一百万个非零矩阵元素进行态到态跃迁。报告并讨论了 C 6 H 6 + He 碰撞截面的性质。近似的精度经过严格测试,发现适用于天体物理/天体化学模拟。此处开发的方法和代码可用于生成 PAH 和其他大分子(如 iCOM)或彗星彗发中分子 - 分子碰撞的碰撞猝灭速率系数数据库。关键词:非弹性散射、旋转激发、态间跃迁、旋转状态、非弹性截面、MQCT、苯、C 6 H 6 ■ 引言
推进系统的特性可在档案文献中找到。鉴于此,本研究的目的是确定由电动机驱动的直径在 4.0 至 6.0 英寸范围内的各种小型螺旋桨的性能。设计和建造了一个实验测试台,其中螺旋桨/电动机安装在风洞中,以进行静态和动态测试。将本实验的静态和动态结果与以前的研究结果进行了比较。对于静态测试,推力系数、螺旋桨功率系数和总效率(定义为螺旋桨输出功率与电输入功率之比)与螺旋桨转速的关系图。对于动态测试,螺旋桨的转速在规则间隔内保持不变,同时自由流空速从零增加到风车状态。推力系数、功率系数、螺旋桨效率和总效率与各种转速的前进比的关系图。发现推力和扭矩随着转速、螺旋桨螺距和直径的增加而增加,随着空速的增加而减小。使用现有数据以及来自档案和非档案来源的数据,发现方形螺旋桨的推力系数随螺旋桨直径的增加而增加,其中 D = P 。螺旋桨系列的推力系数(sam
转速和部分负载范围内。没有通常与叶轮中的电机堵塞有关的系统效率损失。PMblue 电机的尺寸与当今的 IEC 标准电机相同,因此可以直接互换。这些电机以其低噪音和无振动的运行脱颖而出,并且非常适合高达 5000 rpm 的极高转速。由于 PMblue 电机和 PMIcontrol 控制器来自同一来源,因此驱动组件彼此完美匹配。这有助于简单快速地调试,因为不需要特殊配置,产品符合开放的 ZAcode 理念。