使用身份验证,提供以下HOP信息(Next Hop)和多播,对RIP进行了一些改进,即支持VLSM。在每个路由中添加子网掩码信息使路由器不必假设该路由具有与使用的子网掩码相同的子网掩码。
根据全球航空交通客运需求年均增长率和全球航空运输机队增长率等指标,过去十年的航空运输增长速度呈现逐年下降的趋势。这一不可避免的进步给航空业带来了挑战,迫使航空公司推出一系列解决方案,以提高消费者对品牌的忠诚度。这些解决方案可以根据需要进行多样化,以降低航空运营中遇到的高成本、防止计划起飞时间延误、提高服务质量或减少环境影响。虽然可以参考过去的调查,但这不足以涵盖丰富的航空调度文献,尤其是过去十年的文献。本研究旨在通过回顾 2009 年至 2019 年期间发表的航空运营相关论文来填补这一空白,并重点关注飞机维修路线领域的论文,这是一个很有前途的分支。
化石燃料正在迅速耗尽,随着对环保能源的需求不断增加,电网正在寻找基于分布式发电的可再生资源。这些能源的分布与智能微电网的发展密切相关,而智能微电网也与能源互联网密切相关。本文探讨了能源互联网的运作,重点是开发一种能源路由器的路由算法。借助模拟,进一步证实了能源路由算法。该算法可以找到两个节点之间可用于能源传输的所有路径,并选择损耗最小的轨道作为传输路径。所有可能的路线都与每个方向相关的损耗一起显示,以确保采用损耗最小的方法。该算法还以每小时为间隔进行 24 小时的测试,以观察系统上传输的功率变化。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
我们提出了在互动约束下实施量子位的任意排列的方法。我们的协议利用了以前的方法来快速逆转沿路径的Qubits顺序。在长度为n的路径上,给定最近的邻里相互作用,我们表明存在常数ϵ≈0。034使得量子路由时间最多为(1 -ϵ)N,而任何基于交换的协议至少需要时间n -1。这代表了基于交易的路由方法的第一个已知量子优势,并且还为现实的架构(例如网格)提供了改进的量子路由时间。fur -hoverore,我们表明我们的算法接近量子路由时间为2 N/ 3的量子路由时间均匀随机排列,而基于交易的协议则需要渐近时间为n。此外,我们考虑了稀疏的置换量k≤n量子位,并在路径上,在路径上最多可在n/ 3 + o(k 2)上给出量子路由时间,最多为2 r/ 3 + o(k 2)在半径为r的一般图上。
我们提出了在互动约束下实施量子位的任意排列的方法。我们的协议利用了以前的方法来快速逆转沿路径的Qubits顺序。在长度为n的路径上,给定最近的邻里相互作用,我们表明存在常数ϵ≈0。034使得量子路由时间最多为(1 -ϵ)N,而任何基于交换的协议至少需要时间n -1。这代表了基于交易的路由方法的第一个已知量子优势,并且还为现实的架构(例如网格)提供了改进的量子路由时间。fur -hoverore,我们表明我们的算法接近量子路由时间为2 N/ 3的量子路由时间均匀随机排列,而基于交易的协议则需要渐近时间为n。此外,我们考虑了稀疏的置换量k≤n量子位,并在路径上,在路径上最多可在n/ 3 + o(k 2)上给出量子路由时间,最多为2 r/ 3 + o(k 2)在半径为r的一般图上。
这项研究的目的是在货物货车途径问题中引起的组合选择问题。在这项研究中,提出的解决组合优化概率的方法包括多个阶段:数据清洁,数据预处理,K-NN和无能的车辆路由问题模型。结果表明,机器学习方法可以优化组合选择问题问题,尤其是在产生车辆路线点和交付能力时。通过考虑纬度和经度点来确定车辆路线的炭化。本研究构建了一个框架,并将其实现在多级优化模型中,以减少由不平衡的多种分类而导致的过度拟合和错误分类结果,这是由于“节点”对车辆路线的影响,并通过机器学习对车辆路线的影响。该模型的目的通常是了解问题中的机甲nism,以便它可以基于Jalur Nugraha Ekakurir交付路线对不平衡的车辆路线数据进行分类。因此,借助模型可以是基于货物运输数量的容量限制来确定车辆路线的模型。使用机器学习模型和测试k值的车辆路由问题的研究结果11,13,15。其具有k = 11精度的百分比为57.3265%,k = 13精度为57.3265%,k = 15精度为81.8645%。与奇数k值的测试结果相比,K 15 K = 15值更好,而K 11 K = 11,而13 k = 13,k 15 k = 15。结果,开发的模型在Cavaci Ty车辆路由问题模型的准确性方面的准确性为93.80%,时间序列的平均预期为93.31%,召回率为93.80%。获得的结果对于开发更现代的模型,机器学习>的车辆路线问题
多播组由其多播组地址标识。多播数据包被传送到该多播组地址。与唯一标识单个主机的单播地址不同,多播 IP 地址不标识特定主机。要接收发送到多播地址的数据,主机必须加入该地址标识的组。数据被发送到多播地址,并由已加入该组的所有主机接收,表明它们希望接收发送到该组的流量。多播组地址被分配给源处的组。分配多播组地址的网络管理员必须确保地址符合互联网号码分配机构 (IANA) 保留的多播地址范围分配。