1 研讨会于 2023 年 7 月在阿姆斯特丹大学举行。更全面的建议版本将在即将发表的文章中发表。我们感谢各位参与者在研讨会期间和之后的宝贵意见(参加研讨会并不等于认可下文列出的所有建议):Bettina Berendt 博士(柏林工业大学互联网与社会教授)、Ian Brown 博士(里约热内卢热图利奥·瓦尔加斯基金会法学院技术与社会中心客座教授、顾问)、Nick Diakopoulos 博士(西北大学传播学和计算机科学教授(特聘))、Tim de Jonge(拉德堡德大学博士候选人)、Christina Elmer(多特蒙德大学数字新闻/数据新闻教授)、Natali Helberger 博士(阿姆斯特丹大学杰出法学与数字技术大学教授)、Clara Helming(AlgorithmWatch 高级政策与宣传经理)、Karolina Iwańska(欧洲非营利组织中心数字公民空间顾问)法)、Frauke Kreuter 博士(慕尼黑大学统计与数据科学教授)、Laurens Naudts 博士(阿姆斯特丹大学法学博士后研究员)、Liliane Obrecht(巴塞尔大学法学博士生)、des 博士。 Angela Müller(AlgorithmWatch 政策与宣传主管)、Estelle Pannatier(AlgorithmWatch CH 政策与宣传经理)、Stanislaw Piasecki 博士(阿姆斯特丹大学法学博士后研究员)、João Quintais 博士(阿姆斯特丹大学信息法助理教授)、Matthias Spielkamp(AlgorithmWatch 创始人兼执行董事)、Daniel Oberski 博士(乌得勒支大学健康数据科学教授)、Ot van Daalen 博士(律师;阿姆斯特丹大学信息法讲师和研究员)、Kilian Vieth-Ditlmann(AlgorithmWatch 政策与宣传副团队负责人)、Sophie Weerts 博士(洛桑大学公法副教授)、Frederik Zuiderveen Borgesius 博士(拉德堡德大学 ICT 和法律教授)。此外,我们感谢以下专家对研讨会成果的宝贵书面反馈:Nikolett Aszódi(AlgorithmWatch 政策与宣传经理)、Paul Keller(Open Future 政策总监)和 Alex Tarkowski(Open Future 战略总监)。
Brian Drake 是国防情报局未来能力与创新办公室的人工智能主任。他领导该机构的人工智能研究和开发投资组合。作为一名分析师,他领导多个团队应对来自国家和非国家行为者的威胁,涉及技术、反情报和禁毒主题。他曾担任德勤咨询公司的经理和托夫勒联合公司的管理顾问,专门为商业和政府客户提供战略规划、业务发展、合作咨询、技术和创新服务。他还曾担任系统规划和分析公司的军事平台和政策分析师以及 DynCorp 的核武器计划分析师。他拥有默瑟大学的文学学士学位和乔治城大学的硕士学位。除了他的官方职责外,他还是国防情报纪念基金会的总裁兼首席执行官;为阵亡国防情报官员的子女设立的奖学金基金。
■ 所有标准和出版物 ■ 标准产品 ■ 研讨会论文和 STP ■ 手册、专著和数据系列 ■ 技术报告 ■ 期刊 ■ 阅览室 ■ 作者
1译者注:中文术语可以将英语翻译成“人工通用情报”(AGI)或“通用人工智能”(简称“通用AI”)。这种翻译选择“通用AI”,因为当中国作家使用该术语通用人工智能时,通常是指广泛的AI形式,而不是像Agi所暗示的那样类似于人类认知的AI。有关此术语的更全面讨论,请参见Wm。C. Hannas,Huey-Meei Chang,Daniel H. Chou和Brian Fleeger,“中国的高级AI研究:监视中国通往“一般'人工智能的途径”,“人工智能中心”,“安全与新兴技术中心”,2022年7月7日,2022年,HTTPS://CSET.GEORGETONTOWN.GEORGETOWN.GEORGETONTOWN.EDUE/PUBLITICA/CHINAS-CUBUBLICATION/CHINAS-EREVENG 1-3。1-3。
1 美国东北大学网络科学研究所和物理系,马萨诸塞州波士顿 02115;2 美国哈佛医学院布莱根妇女医院医学系钱宁网络医学分部,马萨诸塞州波士顿 02115;3 美国哈佛大学生物医学信息学系,马萨诸塞州波士顿 02115;4 美国哈佛大学哈佛数据科学计划,马萨诸塞州剑桥 02138。5 Scipher Medicine,221 Crescent St, Suite 103A,马萨诸塞州沃尔瑟姆 02453;6 美国东北大学物理系,马萨诸塞州波士顿 02115;7 萨班哲大学工程与自然科学学院,土耳其伊斯坦布尔 34956;8 美国马萨诸塞州波士顿大学 NEIDL 微生物学系;9 美国马萨诸塞州波士顿哈佛医学院布莱根妇女医院医学系10 匈牙利布达佩斯 1051,中欧大学网络与数据科学系。 * 这些作者的贡献相同
摘要 - 深处增强学习(RL)已经获得了自动在现代芯片设计中生成位置的人口。但是,这些RL模型产生的平面图的视觉样式与手动布局的样式大不相同,因为RL垫片通常只采用诸如Wirelength和Routing Expestion之类的指标作为增强学习的奖励,而忽略了人类专家的复杂且细腻的布局经验。在本文中,我们提出了一个安置得分手,以评估布局的质量,并将异常检测应用于地板计划。此外,我们将该得分手的输出添加为加强安置过程的奖励的一部分。ISPD 2005基准的实验结果表明,我们提出的放置质量得分手可以根据人类工艺风格有效地评估布局,并且将此得分手添加到增强式学习奖励中,有助于与以前的电路设计相比,用更短的线长度生成较短的线长度。索引术语 - 地板,加固倾斜,异常检测,放置得分手
摘要 - 在高等教育中,培养鼓励学生参与现实世界挑战的环境对于专业发展至关重要。这一原则为我们与第八学期纳米技术工程专业学生的合作努力支撑。通过创新的方法,例如合成结合菠萝果皮的聚合物纤维,我们解决了环境问题并利用菠萝废物的未开发潜力。菠萝行业每年产生大量的非利用废物,主要是茎,牙冠和果皮,占整个水果的67%。菠萝果皮富含生物活性化合物(如多酚)对化妆品行业的应用有望,如果将它们纳入合适的输送系统中,则可能会增强产品(例如提拉配方)。在目前的工作中,使用商业挤出机合成了装有10%,20%和30%菠萝果皮粉(PP)的聚乳酸(PLA)和多碳酸酯(PCL)纤维。傅立叶变换红外和差异扫描量热法证实了由于形成了新的化学键和相互作用的有效PP掺入纤维中。使用扫描电子显微镜(SEM)进行的形态表征表明,纤维的横截面长度从3.7μm到90.19μm。高性能液相色谱和叶核方法评估了酚类化合物含量和释放速率。PLA纤维具有20%的PP,显示出酚类化合物的最大保留率,为1243.69±234.14 µg化合物/ g纤维),而PCL纤维在24小时内显示出迅速释放,高达95.79±5.94%。这些结果表明,商业挤出机可以在化妆工业中可能使用的聚合物微纤维作为菠萝果皮中酚类化合物的递送系统的可行性。
过去十年,澳大利亚最大的出口产品是铁矿石。澳大利亚拥有清洁能源未来所需的几乎所有金属储量,居世界首位。如今,澳大利亚将这些金属的大部分以矿石形式出口,在其他地方提炼成金属。89% 的澳大利亚铁矿石未经提炼成钢就直接出口。炼钢成本的三分之一实际上是提炼矿石所需的能源。我们有矿石,我们有能源超级大国,我们应该利用多余的能源来提炼矿石。如果我们将能源嵌入制造过程并出口更多精炼金属(售价高得多),我们就有了一个超级大国的机会,非常适合澳大利亚的自然资源优势——金属矿石和低成本能源。钢铁的售价大约是铁矿石的 10 倍。举一个简单的例子,今天我们从铁矿石出口中获得了约 780 亿美元的收入。如果我们将其提炼并作为钢铁出口,收入可高达 7070 亿美元。
安全是我们在空中客车公司业务的基础,涵盖了所有活动,以防止涉及空客产品和服务的事件和事故,以在发生这些事件时管理这些活动,以绘制经验教训并适当地实施更改。
嵌入式设备可以在本地实时处理生物医学信号,因此临床研究和治疗应用的生物医学信号分析可以受益匪浅。一个例子是分析癫痫患者的颅内脑电图 (iEEG) 以检测高频振荡 (HFO),这是致痫脑组织的生物标志物。混合信号神经形态电路提供了构建紧凑、低功耗神经网络处理系统的可能性,该系统可以实时在线分析数据。在这里,我们介绍了一种神经形态系统,该系统在同一芯片上结合了神经记录头端和脉冲神经网络 (SNN) 处理核心来处理 iEEG,并展示了它如何可靠地检测 HFO,从而实现最先进的准确性、灵敏度和特异性。这是首次使用混合信号神经形态计算技术实时识别 iEEG 中相关特征的可行性研究。