研究了两种气体(CO 2)和甲烷(CH 4)的两种气体中的中红外区域的检测,研究了不同的集成光子传感器。这三个研究的结构是基于Chalcogenide膜(CHG)或多孔也(PGE)和基于CHG的Slot波导的山脊波导。优化了波导尺寸,以在导向光和气体之间获得最高功率因数,同时保持在中红外波长范围内的单个模式传播。在CHG山脊波导的情况下,可实现的功率因数为1%,PGE-Ridge为45%,在CHG-Slot的情况下为58%。在λ=4.3μm处的二氧化碳的检测极低(LOD),甲烷在λ=7.7μm下的二氧化碳为0.1 ppm,由于中液范围内的较大的气体吸收系数,可获得CHG SLOT波引导的λ=7.7μm。对于多孔驻驻波导,还计算出低LOD值:CO 2在λ=4.3μm时为0.12 ppm,CH 4在λ=7.7μm处的Ch 4 ppm。这些结果表明,所提出的结构可以在环境和健康感测芯片上实现通用光谱检测所需的竞争性能。
快速工业化促使经济增长和人口增加,但也导致了重大的环境问题和能源短缺。要有效地应对这些挑战并朝着碳中性能源框架迈进,检查清洁能源选择并减少对化石燃料的依赖至关重要。在这些替代方案中,由于其能量密度和环境亲和力(既丰富又可再生),氢气作为领先的候选者脱颖而出。本研究对根据国家和作者身份进行了详细概述了有关氢吸附和存储的年度科学活动。该研究旨在评估该领域的演变,其主题转变以及全球合作的动态。目前的研究是在2000年至2022年的数据库Web网络网络网络中进行的,使用了与氢吸附,存储和密度功能理论相关的一组预定的关键字集。用RSTUDIO的BiblioMetrix软件包分析了检索到的数据,以评估出版趋势,三个不同时期的研究进化和全球协作网络。当前的研究重点是确定总共2183个文档,后来根据其与氢存储主题相关的评估和组织。在本工作中,评估了881篇文章的资格,通过学位和Pagerank指标确定了60项关键研究,研究的演变在整个三个关键阶段都深入研究。该研究探讨了国家之间的全球合作网络,并确定了该领域的有影响力的作者和领先期刊。所确定的三个不同时期是:初始阶段(2000-2008),其标志着离子液体和氢存储的基本工作。中级阶段(2009-2015)见证了科学生产的增加,以关注金属有机框架的基本原理和方法论。当前阶段(2016-2022)的特征是最佳生产力,突出了对纳米管和电催化剂的创新研究,这些研究促进了有效产生氢的生产。通过鉴定关键趋势,这项研究突出了正在重塑氢存储景观的新型材料和技术的出现。这样的进步指向未来研究和创新的潜在方向,从而在可持续能源解决方案的发展中发挥了至关重要的作用。这项文献计量学研究对定义氢吸附和储存研究领域的不断发展的趋势,贡献和协作动力学有很大的见解。
在线存放在白玫瑰研究中的重用项目受版权保护,除非另有说明,否则保留所有权利。可以下载和/或印刷供私人学习,或者按照国家版权法所允许的其他行为。发布者或其他权利持有人可以允许进一步复制和重新使用全文版本。这是通过该项目的白玫瑰研究在线记录的许可信息来指示的。
使用基于两种或多光子吸收的聚合物光蛋白师使用高功率PICO-PICO或飞秒激光器,使用聚合物光孔师使用聚合物光孔师和纳米蛋白酶,从而导致相当大且昂贵的仪器。最近,我们基于两步吸收而不是两步的光子吸收,而不是两次光子的吸收,从而允许使用小型且廉价的连续波405 nm波长GAN GAN GAN半导体激光二极管激光二极管,其光输出功率低于1 MW。在此使用相同的光孔系统和相似的激光二极管,我们报告了适合鞋盒的3D激光纳米螺旋体的设计,构造和表征。这个鞋盒包含所有光学组件,即安装激光器,准直和横梁成型光学元件,微型mems xy-scanner,tube镜头,聚焦显微镜物镜,na = 1.4,100 x放大倍率),一个piezo slips-splip s-split z-spectiatiation sminiation sminitiation sminiatiation sminiatiatiatiatiatiatiatiatiatiatiatival smimiatiate smination Sypame sypamer sypamer sypamer sypame sypame sypamer nimul sminiatiatiatiatiatiatiatiatiatiatiatiatiatiatiatiatiatival。采用微控制器的电子设备。我们提出了用该仪器打印的示例3D结构的画廊。我们达到了约100 nm的横向空间分辨率,重点扫描速度约为1 mm/s。可能,我们的鞋盒大小的系统可以比今天的商业系统便宜。
的确,受限的金属原子显示宿主系统费米水平附近的局部原子状态。这些状态,无论是填充还是空,都可以分别有利于氧化或还原化学过程。出现的问题是:(i)SAC的化学活性主要取决于被困的金属原子的类型,还是由二二剂GR层中的金属限制来决定,这意味着金属本身的性质不太相关,并且(ii)底层金属是否扮演着作用。回答这些问题对于设计基于智能SAC的系统至关重要,因为它需要理解有助于系统反应性的所有因素,从而确定具有更大意义的人,从而适当地指导材料准备。遵循此流,在我们最近的工作中,[31]我们成功创建并彻底地表征了基于GR的系统,其中单个CO原子被困在GR
与纯MGSO₄20和MGCl₂分别降低了64.8 kJ/mol的反应激活能量46.2%和79.2%。对本研究中使用的模拟参数进行了测量,每21个复合材料。数值模拟验证了材料的实用性,显示了116.7 W的最大22瞬时放热功率,体积储能密度为237.2 kWh/m³。23这项研究突出了球形培养材材料在低24
摘要 - 使用玻璃碳电极与化学计量学结合的吸附性剥离伏安法(ADSV),以同时测定茶样中的咖啡因,obromine和Theopherline,从而提供高选择性,敏感性,简单性,简单性和成本效率。最佳电化学条件为0.01 mol.l -1 H 2 SO 4,吸附电位为0.6V,而AG/AGCL/KCL为0.025 V/s的扫描速率,吸附时间为60 s。每种化合物的线性校准图在1.0×10 -6至4.0×10 -5 mol.l -1,1.0×10 -6至3.0×10 -5 mol.l -1和1.0×10 -6至1.0×10 -6至1.4×1.4×10 -5 mol中获得了每种化合物的线性校准图。l -1分别用于咖啡因,obromine,Theophlilline。在这项研究中,尽管混合物中的咖啡因,鲜红球和茶碱的伏安峰重叠,但作为化学计量技术(例如部分最小二乘(PLS),主成分回归(PCR)和经典最小二乘(Clasical Distical Squares(Cls)),不需要一个前分离步骤。在三个多元线性回归中,选择了PLS方法,因为它的相对误差最小,均小于±11.1%。相比之下,CLS的性能较差,相对达到±83%。提出的新方法被应用于同时确定茶样中的咖啡因,鲜血和茶碱。与使用高性能液相色谱(HPLC)获得的结果相比,结果没有显着差异。
使用改良的花生壳吸附剂 * 1 abidemi anthony anthony sangoremi,从废水中去除溴氯氯诺染料的吸附动力学机制; 2 Joseph Adeleke Adeyeye; 1 ISAAC UDO ISAAC 1尼日利亚贝尔萨州联邦大学的化学系2水资源与农业学系,尼日利亚Oye-Ekiti *通讯作者电子邮件地址:sangoremiaa@fuotuoke.edu.ng摘要该研究探索了Modifient的Greeths Greens(MOS),探索了Modifient的Greene(MON)的ADS ADS ADS ADS ADS ADS, (BCGD)来自废水,作为成本密集型废水处理技术的替代方法。吸附剂的特征是物理化学特性,并通过使用扫描电子显微镜(SEM),傅立叶变换红外(FTIR)和能量分散X射线光谱仪(EDX)作为表征工具。评估接触时间对染料回收百分比的影响。将动力学数据拟合到动力学模型,例如Brouers Weron Sotolongo-Coasta(BWS),分形伪秒阶(FPSO),伪一阶(PFO),伪二阶(PSO)模型,使用非线性形式的模型。结果表明,生物质具有pH(6.60),水分含量(14.20)%,挥发性物质,(10.20)%,灰分含量(8.10)%,固定碳(65.50)%,散装密度(0.440)G /cm 3,表面积(690)M 2 /G和粒子和粒度(690)M 2 /G和粒子(250)µm。吸附剂具有较高的碳含量和发达的孔结构。吸附百分比染料去除效率(%r)是时间依赖的(30分钟)。吸附剂在最佳时间的最大百分比染料去除84%。最能描述从废水中去除BCGD的动力学数据为BWS(r 2 = 0.9644)。总的来说,从MGNs准备的吸附剂有效,环保且经济可行,可在处理染料污染的废水,确保调节性合规性和促进水再利用。关键字:绿色,合规性,接触时间,剂量,技术,废水简介纺织染料和其他工业染料构成最大的有机化合物组之一,代表了日益增长的环境威胁(Jabar等,2020; 2022; 2022; Olafadehan等人,2022年)。工业,例如纸,纺织品,塑料,洗涤剂,化妆品,皮革,制药和食品行业,不断将含有染料及其崩溃的产品毒性的环境排放到环境中(Hameed等,2008; Giwa等,2015; carneiro; carneiro; carneiro et al。在染色过程中丢失了世界染料总生产总量的约1-20%,并作为废水释放(Munagapati等,2018; Mansour等,2020)。即使在非常低的浓度下,某些染料的毒性也可能会显着影响水生寿命。皮肤刺激,过敏和对人类癌症的发生率也可能导致(Giwa等,2015)。 溴化剂绿色染料(BCGD)(C 21 H 14 Br 4 O 5 s),3,3-双(3,5-二溴-4-羟基-Hydroxyl-2-甲基苯基) -皮肤刺激,过敏和对人类癌症的发生率也可能导致(Giwa等,2015)。溴化剂绿色染料(BCGD)(C 21 H 14 Br 4 O 5 s),3,3-双(3,5-二溴-4-羟基-Hydroxyl-2-甲基苯基) -
近年来,随着微波加热,雷达和航空航天的持续发展,人们越来越关注微波炉吸收材料(MAM),并且其开发和应用越来越广泛。在民用用途中,微波炉被广泛用于通信,雷达检测和其他领域[1,2]。这不仅为人类活动提供了便利,而且还导致严重的电磁波吸收(EMA)污染和电磁干扰[3,4]。在军事中,微波雷达已在各个国家广泛使用,并已成为一种无处不在的反坦健康技术,该技术已成为与国家安全有关的重要问题[5,6]。因此,全世界的研究人员致力于研究新的妈妈,希望能有效地吸收EWA来解决上述问题。bionics是一种模拟设计技术系统中生物学原理的领域,旨在赋予人工系统具有相似甚至卓越的生物学功能[7,8]。通过显微镜技术的进步,已经揭示了有机体在视觉上出现“普通”但具有显着功能的生物具有复杂的微观结构。这些功能不仅源于原子或分子排列,而是源于“功能原始素”的顺序组装,该组件组成几个比分子和原子大的数量级[9-11]。如图1,仿生象征的物体包括各种生物,从动物和植物到人体器官[12]。bionics通过两个主要方面实现了其目标:结构性培训和功能性生物学。结构仿生学涉及代表生物体的宏观或微观体系结构以达到意外目的[13]。同时,功能仿生学模仿了生物体固有的机械,光学,声学,电气和磁能力。例如,荷叶叶子的微纳维尔乳头“乳头”结构,由蜡质材料组成,可以实现超氧化和自我清洁的特性[14]。另外,变色龙体内的鸟嘌呤颗粒的周期性排列形成天然光子晶体,表现出动态的颜色范围[15],说明了功能仿生的丰富性和复杂性。此外,值得注意的是,化学成分在仿生学中也起着作用,因为它通常决定了独特的特性