在本课程的第一周,您将了解现代密码学和 RSA 密码系统的历史和用途。然后,您将探索量子傅里叶变换及其在 Shor 算法中的应用,以破解 RSA。本周将以深入研究 Shor 算法的原型演示结束。• 简介(10 分钟)• 现代密码学(15 分钟)• RSA 密码系统、因式分解和 Shor 算法(20 分钟)• 深入研究:密码学和 Shor 算法(35 分钟)• ✭ 案例研究:Shor 算法演示(45 分钟)建议的日期:第 1 周结束• ✭ 检查您的理解问题*(15 分钟)建议的日期:第 1 周结束• ✭ 评分活动(30 分钟)建议的日期:第 1 周结束• 关键图像(3 分钟)* 检查您的理解问题分布在每周,并在课程结束时截止。
ISO/IEC标准加密LSI用于侧通道攻击评估(密码LSI)是LSI,其中RSA和块上的密码在ISO/IEC 18033中的“ Part3:Block Ciphers”(信息技术 - 安全技术 - 加密技术 - 加密Algorithms)实施了侧向攻击评估。加密LSI使用TSMC的0.13μmCMOS工艺和160针QFP陶瓷包装。有七个密码,AES,DES,MISTY1,CAMELLIA,SEED,COST和RSA。AES用七个作用实施。因此,LSI上有13个加密电路。LSI的两个版本是为日本和日本以外的其他国家建造的。由于出口控制,在日本以外的其他国家 /地区的LSI中,密码电路的关键长度限制为56位,而RSA则有512位。其余部分是固定的。密码的详细信息如下:
该法案还引入了各种改革,以促进更有效地管理无线电频谱,包括频谱交易和认可频谱访问 (RSA)。频谱交易将有助于通过市场为新服务提供更快的频谱访问,作为申请许可证的替代方案。RSA 是一种新的频谱管理系统,它将为无法获得许可的用户提供增强的频谱质量安全性。这些发展将有助于频谱管理跟上快速发展的通信领域技术和市场发展的步伐,并帮助频谱管理促进创新和增长。
远程视觉辅助 (RSA) 已成为一种针对视障人士 (VI) 的对话辅助技术,其中远程视觉代理通过类似视频聊天的通信为视障用户提供实时导航帮助。在本文中,我们进行了文献综述并采访了 12 位 RSA 用户,以全面了解代理和用户在 RSA 中面临的技术和导航挑战。技术挑战分为四类:代理在定位和定位用户方面的困难;获取用户周围环境和检测障碍物;传递信息和了解用户特定情况;应对网络连接不佳。在 15 个真实场景(8 个室外,7 个室内)中为用户呈现导航挑战。先前的研究表明,计算机视觉 (CV) 技术,尤其是交互式 3D 地图和实时定位,可以解决这些挑战的一部分。然而,我们认为,解决这些挑战的方方面面需要人机协作的新发展,我们将其形式化为五个新兴问题:使物体识别和避障算法具有盲目感知能力;在较差的网络下定位用户;识别 LCD 屏幕上的数字内容;识别不规则表面上的文本;预测画外行人或物体的轨迹。解决这些问题可以推动计算机视觉研究并迎来下一代 RSA 服务。
摘要:RSA是最广泛采用的公钥加密算法之一,它通过利用模块化指数和大质量分解的数学属性来确保安全通信。但是,其计算复杂性和高资源要求对实时和高速应用构成重大挑战。本文通过提出针对RSA加密和解密的优化非常大规模的集成(VLSI)设计来解决这些挑战,重点是加速模块化凸起过程,这是RSA计算的核心。设计结合了蒙哥马利模块化乘法,以消除时间密集型的分裂操作,从而在模块化算术域中有效地计算。它进一步整合了诸如管道,并行处理和随身携带加盖之类的技术,以减少关键路径延迟并增强吞吐量。模块化启动是使用正方形和多种方法的可扩展迭代方法实现的,该方法针对硬件效率进行了优化。硬件原型是使用FPGA和ASIC平台合成和测试的,在速度,区域和功耗方面表现出卓越的性能。所提出的体系结构在保持安全性和可扩展性的同时,可以实现高速操作,使其适用于实时的加密应用程序,例如安全通信,数字签名和身份验证系统。与现有实现的比较分析突出了重大改进,将提出的设计作为下一代安全硬件加速器的可行解决方案。关键字:RSA算法,Verilog,FPGA
• (FIPS 203) “基于模块格的密钥封装机制标准”(ML-KEM);取代 Diffie-Hellman(又名 Kyber)。 • (FIPS 204) “基于模块格的数字签名标准”(ML-DSA);取代 RSA 和 ECDSA(又名 Dilithium)。 • (FIPS 205) “基于无状态哈希的数字签名标准”;取代 RSA 和 ECDSA(又名 SPHINCS+) • 最终规范 1 将于 2024 年 8 月发布 • 另一个 PQC 签名赢家但尚未公开草案:Falcon • NIST 仍在寻找更多数字签名方案,最好不是基于模块格。 • 预计 CNSA 规范将使这些成为必需。
使用椭圆形曲线(EC)上有限场上的加密协议是全球范围内已知的数字签名生成和验证[1]以及相互认证的方法。ec加密操作是时间且能量昂贵,但要比RSA快得多[2]。此外,椭圆曲线密码学(ECC)使用的加密密钥比RSA明显短,同时提供相同的安全性。这减少了发送和接收消息所需的时间和能量。这些功能使ECC对不仅需要高度安全性,而且需要低功率的实时通信和数据处理的设备非常有吸引力。重要性的应用领域是物联网(IoT),自动驾驶,电子卫生,行业4.0和许多其他应用程序。