新的基因组技术(NGT)也用于改善农作物的营养价值(质量特征)。目标是增加维生素,重要营养素和微量营养素的含量。的例子是米饭,具有更多的铁,大豆,具有更高比例的健康油酸,以及瓜,大米和香蕉,含量更高的维生素A。将来,这些植物也可以促进许多国家的重要营养素(“隐藏饥饿”)的猖support,从而改善了营养和保健性的健康和健康。,但也可以减少不良成分,例如小麦含量减少的麸质含量或土豆,其中较少的致癌丙烯酰胺会产生[7]。
目的:对于患有肌萎缩侧索硬化症 (ALS) 的患者,利用代码调制视觉诱发电位 (cVEP) 的脑机接口 (BCI) 拼写器可能为现有的视觉 BCI 拼写器提供一种快速且更准确的替代方案。但到目前为止,cVEP 拼写器仅在健康参与者身上进行过测试。方法:我们评估了 20 名健康参与者和 10 名 ALS 患者的大脑反应、BCI 性能和 cVEP 拼写器的用户体验。所有参与者都执行了提示和自由拼写任务,以及自由选择是/否答案。结果:30 名参与者中有 27 名可以完成提示拼写任务,ALS 患者的平均准确率为 79%,健康老年参与者的平均准确率为 88%,健康年轻参与者的平均准确率为 94%。所有 30 名参与者都可以自由回答是/否问题,平均准确率约为 90%。结论:对于平均每分钟输入 10 个字符的 ALS 患者,本文介绍的 cVEP 拼写器的表现优于其他视觉 BCI 拼写器。意义:这些结果支持 cVEP 信号对 ALS 患者的普遍可用性,这可能远远超出测试的拼写器,例如控制智能家居中的警报、自动门或电视。2021 年国际临床神经生理学联合会。由 Elsevier BV 出版这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
p1.1 2d Andreas BeerUniversitätRegensburg接近性诱导的交换交互和动态电荷转移在Mose2/Crsbr van-der-waals异质结构带有正交旋转纹理
Annex 70 Building Energy Epidemiology: Analysis of Real Building Energy Use at Scale: Martin Jakob ( martin.jakob@tep-energy.ch ), TEP Energy Annex 72 Assessing Life Cycle Related Environmental Impacts Caused by Buildings: Rolf Frischknecht ( frischknecht@treeze.ch ), Treeze Annex 75 Cost-effective District Level Building Renovation Strategies with Energy Efficiency and Renewables: Roman Bolliger(roman.bolliger@econcept.ch),Econcept Annex 79以乘员为中心的建筑设计和操作:Arno Schlueter,ETH; Dusan Licina,EPFL; Dolaana Khovalyg,EPFL附件82 Energy柔韧的建筑物,朝着弹性的低碳能源系统:FHNW的Monika Hall;罗马·鲁德尔(Roman Rudel),supsi; Kristina Orehounig,Empa附件83正能量区:Zhang,PSI - 热抽水技术(HPT TCP):Elena-LaviniaNiederhäuser,Stephan Renz(椅子)
基础研究 Arnold Isabelle |探索转录组学时代嗜酸性粒细胞在进行性结直肠癌分期和转移中的作用苏黎世大学(UZH)实验免疫学研究所,苏黎世 CHF 369 644 | 36个月 | KFS-6248-08-2024 巴斯勒康拉德 |研究左侧和右侧结肠癌的异同:转移焦点苏黎世大学(UZH)分子生物学研究所,苏黎世 207,500 瑞士法郎 | 18个月 | KFS-6031-02-2024 贝歇尔·布克哈德 |针对肿瘤浸润 Treg 上的 IL-23R 进行癌症免疫治疗 苏黎世大学 (UZH) 实验免疫学研究所,苏黎世 CHF 351 578 | 36个月 | KFS-6022-02-2024 啤酒瓶 Niko |为精准肿瘤学分析卵巢癌肿瘤演变 瑞士联邦理工学院(ETH)生物系统科学与工程系,巴塞尔 CHF 373 051 | 36个月 | KFS-6058-02-2024 Cejka Petr |朝着对癌症治疗中合成致死的 DNA 二级结构处理的机制理解 USI,生物医学研究所 (IRB),贝林佐纳 CHF 369 060 | 36个月 | KFS-6136-08-2024 库科斯乔治|下一代 T 细胞癌症免疫治疗的细胞状态实验室演变洛桑沃州大学中心医院 (CHUV) 肿瘤学系 CHF 358 143 | 48个月 | KFS-6060-02-2024
10: 40-11: 20 Mansour Shayegan Princeton University 10: 40-11: 20 Andrei Geim University of Manchester 10: 40-11: 20 Andreas Kuhlmann University of Basel 10: 40-11: 20 Hanna Le Jeannic Laboratoire Kastler Brossel Paris 10: 50-11: 30 Masiar Sistani TU Vienna Div>10: 40-11: 20 Mansour Shayegan Princeton University 10: 40-11: 20 Andrei Geim University of Manchester 10: 40-11: 20 Andreas Kuhlmann University of Basel 10: 40-11: 20 Hanna Le Jeannic Laboratoire Kastler Brossel Paris 10: 50-11: 30 Masiar Sistani TU Vienna Div>
与游轮的合作伙伴关系,尤其是与具有HX这样的探险人物的人| Hurtigruten Expeditions提供了一个独特的机会,可以在全球范围内收集重要的海洋数据。由于这些船只驶过遥远和未触及的海洋地区,因此它们具有移动研究站的装备且可用。通过将特殊的科学仪器整合到船上,您可以连续监测重要的海洋变量,例如水温,盐含量,氧气含量,二氧化碳浓度以及微塑料以及重要的大气气候变量,例如微量气和气溶胶等重要的气候变量。与HX合作的最重要优势之一是,有可能收集有关大型海洋领域的广泛数据,这些数据通常很难通过传统的研究船进入。各种合适的技术,例如EDNA采样和浮游植物监测,还有助于评估海洋的生物学多样性和生态系统的健康,以了解海洋在气候中的作用并改善海洋预测。及其常规和不同路线的巡航船可以在较长时间内持续提供数据,从而有助于长期环境监视和海洋知识。这种方法通过使用已经在偏远区域中的现有船舶来优化资源。除了在HX船上的旅游计划外,弗里德乔夫·南森(Fridtjof Nansen)16岁之间2024年5月和18日通过将它们转换为数据采集平台,我们最大程度地减少了对其他研究探险的需求,并使过程更具成本效益和环保。另一个优势是可以体验正在进行的科学研究并在旅行中参与的乘客的教学收益。这有助于提高人们对海洋监测的重要性以及保护海洋,使旅游与可持续实践和整个社会的影响和谐相处的努力的认识。2024年9月进行了一项科学计划(Tidal -HX01:从机会平台中试用创新数据获取 - HX船只MS Fridtjof Nansen)。根据加拿大温哥华(加拿大)的Reykjaviek(冰岛)路线如图1.1所示。船上的程序包括海洋和大气中的化学,气象,物理和生物测量。这次探险为AWI研究计划POF IV做出了贡献,主题1、2和6。这艘船上的测量结果是作为“ SOOP - 塑造可能性海洋”的一部分进行的。SOOP(https://www.sop-platform.earth/)是创新平台之一,这是Helmholtz-
C. Cichiwskyj等。 :“弹性AI:对普遍计算系统中自适应机器学习的系统支持”,CCF关于普遍计算和交互的交易,Springer,2021。C. Cichiwskyj等。:“弹性AI:对普遍计算系统中自适应机器学习的系统支持”,CCF关于普遍计算和交互的交易,Springer,2021。