FireMaster 现可用于保护风电场变电站和平台,并为海上和陆上风电场和变电站 - OSS、RSS 和 HVDC 平台提供出色的耐火绝缘。
Mobileye 提出了一种技术中立的数学安全模型,帮助定义自动驾驶汽车安全驾驶的含义。我们的模型由形式逻辑和规则组成,称为责任敏感安全 (RSS),遵循五条安全规则:
遥感场景(RSS)图像分类在城市规划和环境保护等各个领域中起着至关重要的作用。然而,由于较高的阶层间相似性和类内变异性,实现RSS图像的准确性分类对当前卷积神经网络(CNN)基于基于的卷积神经网络(CNN)和基于视觉变压器(VIT)的方法构成了巨大挑战。为了解决这些问题,本文提出了一种新颖的双重编码方法,该方法从特征提取和融合的两个角度来看,名为Master-Slave编码网络(MSE-NET)。基于VIT的主编码器提取了高级语义特征,而基于CNN的从属编码器捕获了相对较低级别的空间结构信息。sec-,为了有效地整合两个编码器的特征信息,本文进一步制定了两种融合策略。第一个策略涉及辅助增强单元(AEU),该单元消除了两个编码器之间的语义差异,可增强对奴隶编码器的空间环境意识并促进有效的特征学习。交互式感知单元(IPU)作为第二种策略,促进了两个编码器表示的相互作用和集成,以提取更具歧视性的特征信息。此外,我们在四个广泛使用的RSS数据集上进行了比较实验,包括RSSCN7,Siri-Whu,空中图像数据集(AID)和NWPU-RESISC45(NWPU45),以验证有效性
四重 DFCS 架构 RDFCS 设施设置 保证方法的互补性 多级测试基础 数字飞行系统生命周期架构 设计任务 增强型电传操纵控制律 基线系统架构 通道逻辑 转换图 同步谓词/转换网络 谓词/转换网络细节 谓词/转换网络 模拟输出 顶层软件控制图 DFCS 可靠性框图 飞机模拟框图 托盘化 DFCS 控制律框图 免费 RSS 飞机时间历史软件控制流程图 增强型 RSS 飞机时间历史多级测试 收尾自动测试方案 正常通道同步时间历史启动通道同步时间历史稳定性无俯仰速率增强响应稳定性无攻角增强响应
四重 DFCS 架构 RDFCS 设施设置 保证方法的互补性 多级测试基础 数字飞行系统生命周期架构 设计任务 增强型电传操纵控制律 基线系统架构 通道逻辑 转换图 同步谓词/转换网络 谓词/转换网络细节 谓词/转换网络 模拟输出 顶层软件控制图 DFCS 可靠性框图 飞机模拟框图 托盘化 DFCS 控制律框图 免费 RSS 飞机时间历史软件控制流程图 增强型 RSS 飞机时间历史多级测试 收尾自动测试方案 正常通道同步时间历史启动通道同步时间历史稳定性无俯仰速率增强响应稳定性无攻角增强响应
I. I Tratsuction下一代网络(包括5G及以后)将需要使用动态频谱共享和功率域多次访问来处理不断增加的移动数据流量[1]。为了使这一点成为可能,我们需要开发更准确的估计无线电环境的方法,包括信号强度和拟议服务区域中的频谱可用性。路径损失信息,指示由于不同访问点(AP)而提出的服务区域中信号质量的信息是室内无线电环境中网络部署计划的重要组成部分。因此,在部署AP之前获得预测的室内路径损耗图(IPM)或接收的信号强度(RSS)图是必不可少的,因为它可以准确估算建筑物内的信号强度和覆盖范围,并有助于APS的放置。此外,精确的IPM可以启用应用程序,例如精确的室内定位[2],认知无线网络[3]和移动机器人[4]。获得准确的IPM可以是耗时且劳动密集型的过程,因为它需要在拟议的服务区域中的许多参考点(RPS)进行测量以及测试AP的安装。为了解决此问题,已经提出了各种技术,例如基于参考点上进行的测量值预测IPM的插值方法,以及在不使用RPS的情况下预测IPM的生成方法。Racko等。[5]使用无线电图生成的线性和Delaunay插值技术。通过测量指定位置的RSS,他们能够通过使用两种不同的插值方法来计算完整的RSS。
1) 定义为端点非线性、滞后或重复性误差的 ±2 标准偏差限值。2) 定义为工作标准不准确度的 ±2 标准偏差限值,包括可追溯到国际标准。3) 定义为室温下端点非线性、滞后误差、重复性误差和校准不确定度的平方和根 (RSS)。4) 定义为工作温度范围内温度依赖性的 ±2 标准偏差限值。
摘要 - 特定的发射极标识(SEI)是一项有希望的技术,可以在不久的将来增强大量设备的访问安全性。在本文中,我们提出了一个可重构的智能表面(RIS)辅助SEI系统,其中合法发射器可以通过控制RIS的On-Off状态来自定义SEI期间的通道指纹。在不失去通用性的情况下,我们使用基于接收的信号强度(RSS)欺骗检测方法来分析所提出的体系结构的可行性。具体来说,基于RSS,我们得出了SEI的统计属性,并提供了一些有趣的见解,这些见解表明RIS辅助SEI理论上是可行的。然后,我们得出最佳检测阈值,以最大程度地提高呈现的性能指标。接下来,通过RIS辅助SEI原型平台上的概念验证实验验证了所提出系统的实际可行性。实验结果表明,当传输源分别在不同的位置和同一位置时,性能提高了3.5%和76%。
* 定义为端点非线性、滞后或重复性误差的 ±2 标准偏差限值。** 定义为工作标准不准确性的 ±2 标准偏差限值,包括 NIST 的可追溯性。*** 定义为室温下端点非线性、滞后误差、重复性误差和校准不确定度的平方和根 (RSS)。**** 定义为工作温度范围内温度依赖性的 ±2 标准偏差限值。