从大气中删除CO 2的关注反映了人们对气候变化的越来越多的关注,而气候变化可能以其他生物多样性挑战为代价(Pereira等人。2023a)。环境议程之间的这种不对称性不仅会损害生物多样性,而且会危害气候变化,因为环境问题无情地交织在一起(Pörtner等人。2023)。与气候变化相关的极端天气事件和灾难正在整个星球中出现,导致了前所未有的经济,社会和生态损失(Ripple等人2017)。解决气候危机是紧迫的,但是如果生物多样性问题未完全纳入国际气候议程,2050年的净零碳排放承诺可能会失败。众所周知,生物多样性促进了多种社会环境服务和福利,包括水和空气质量,作物授粉,粮食安全,人类健康和福祉,以及免受土壤侵蚀的保护。气候变化可以加速生物多样性损失,相关的生态系统降解会破坏生态系统的韧性,并通过减少碳固执来减少气候变化的缓解(Pörtner等人2023)。这加剧了极端天气事件的影响,从而增加了脆弱性和社会经济损失。鉴于这些联系,人们对应对气候和生物多样性危机的更一体化方法的需求越来越多。下面我们列出了五种方法,保护生物多样性可以改善气候变化的方法。1.)保护碳和水槽的保护。当前的方法不太可能带来气候利益,如果本地生态系统被异国情调的单特异性立场恢复,并且如果生物多样性和生态系统功能不是计划的一部分,则不太可能提供。当碳沉水量导致热带森林,稀树草原和草原的误导替换为植树种植园,其造成了松树或桉树的异国林分。这是一个严重的错误,因为每个生态系统都有其自身的重要性,必须保留原样,尤其是因为大部分碳都存储在土壤中而不是树木中。例如,草地的保存土壤充当碳汇,但是当植被被去除或用单特异性种植园取代时,水槽可能会成为来源。我们必须扩大对自然生态系统的保护,以促进碳库存的维持(图1)。
实现这些目标的关键挑战是关于评估不同缓解活动及其益处的适当方法的争议(Mackey等,2013)。森林管理策略对生物多样性保护的影响也有所不同(Seddon等,2020)。气候变化和生物多样性损失的相互加强意味着评估方法是对生物多样性的影响(Pörtner等,2021)。投资减排活动,特别是与森林管理有关的投资,可能会导致不良的缓解和保护 - 如果决定是基于与土地面积,参考水平和时间范围相关的不当比较(Klein等人,2013; Bouriaud et el。 此类分析无法正确揭示在土地区域和时间范围内与决策相关的不同活动的实际变化。投资减排活动,特别是与森林管理有关的投资,可能会导致不良的缓解和保护 - 如果决定是基于与土地面积,参考水平和时间范围相关的不当比较(Klein等人,2013; Bouriaud et el。此类分析无法正确揭示在土地区域和时间范围内与决策相关的不同活动的实际变化。
“这是一次令人惊奇的飞行,我担任机长已有近八年。这次旅程充满了冒险,有时下雨下雪,有时遇到强风,包括逆风、雷暴和其他导致改道的原因。在巡航高度,在云层之上,我们阳光明媚,空气平稳,在所选的功率设置下航程良好。经过这次长途飞行,我们安全降落在目的地。现在是时候更换驾驶舱机组人员,给飞机加油,巡视一圈并检查油量,然后 EUROCAE 才能重新升空爬升到下一个更高的高度。我非常高兴 Anna 将接管控制权并驾驶 EUROCAE 进行下一航段。她对 EUROCAE 了如指掌,她知道正常和紧急程序,并且她拥有进行下一次飞行所需的等级、技能和经验。祝你着陆愉快,Anna!对我来说,是时候开始准备我的下一次洲际飞行了,同时永远将这次 EUROCAE 飞行留在美好的回忆中。 “向全体机组人员,无论是地面还是空中,致以深深的‘感谢’,”Christian Schleifer-Heingärtner 说道。
凯瑟琳·贝耶(Kathleen Beyer)6,格雷格·博德克(Greg Bodeker)7,奥利维尔·布歇(Olivier Boucher)12,埃里希·菲舍尔(Erich Fischer)13,福斯特24,25,克里斯·伦纳德(Chris Lennard)26,塔比亚·利斯纳(Tabea Lissner),27,亚历山大4:1,21,格伦·彼得斯28,安娜·皮拉尼29.30 ,贝德斯43:44,托库塔45,
2个政府间气候变化小组(IPCC),2019年:决策者摘要。in:气候变化和土地:IPCC关于气候变化,荒漠化,土地退化,可持续土地管理,粮食安全和温室气体通量的特别报告[P.R.Shukla,J。Skea,E。Calvo Buendia,V。Masson-Delmotte,H.-O.Pörtner,D。C. Roberts,P。Zhai,R。Slade,R。Connors,R。Van Diemen,R。Van Diemen,M。M. Ferrat,M。 Kissick,M。Belkacemi,J。Malley,(编辑)]。3个政府间气候变化(IPCC),(2023),“农业,林业和其他土地用途(Afolu)”,在气候变化2022年 - 缓解气候变化。1 sted。 剑桥大学出版社,pp。 747–860。 可用:https://doi.org/10.1017/9781009157926.009。 4 Clark,M.A。 等。 (2020)“全球食品系统排放可以排除达到1.5°和2°C气候变化目标”,科学,370(6517),pp。 705–708。 可用:https://doi.org/10.1126/science.aba7357。 5农林店由粮农组织定义为土地使用系统和技术,在这些技术和技术中,木本多年生(树木,灌木,棕榈,竹子等)与农作物和/或动物相同的土地管理单位(以某种形式的空间排列或临时序列)故意使用。 请参见www.fao.org/forestry/agroforestry/80338/en。1 sted。剑桥大学出版社,pp。747–860。可用:https://doi.org/10.1017/9781009157926.009。4 Clark,M.A。 等。 (2020)“全球食品系统排放可以排除达到1.5°和2°C气候变化目标”,科学,370(6517),pp。 705–708。 可用:https://doi.org/10.1126/science.aba7357。 5农林店由粮农组织定义为土地使用系统和技术,在这些技术和技术中,木本多年生(树木,灌木,棕榈,竹子等)与农作物和/或动物相同的土地管理单位(以某种形式的空间排列或临时序列)故意使用。 请参见www.fao.org/forestry/agroforestry/80338/en。4 Clark,M.A。等。(2020)“全球食品系统排放可以排除达到1.5°和2°C气候变化目标”,科学,370(6517),pp。705–708。可用:https://doi.org/10.1126/science.aba7357。5农林店由粮农组织定义为土地使用系统和技术,在这些技术和技术中,木本多年生(树木,灌木,棕榈,竹子等)与农作物和/或动物相同的土地管理单位(以某种形式的空间排列或临时序列)故意使用。请参见www.fao.org/forestry/agroforestry/80338/en。
1。政府间气候变化面板(IPCC),编辑。决策者的摘要。在:1.5°C的全球变暖。一份IPCC特别报告,关于在加强全球对气候变化,可持续发展的威胁,可持续发展以及消除贫困的努力的背景下,全球变暖1.5°C高于工业水平及相关的全球温室气体排放途径的影响。V. Masson-Delmotte,P。Zhai,H.O。 Pörtner和等。 2018,剑桥大学出版社:英国剑桥。 2。 世界气象组织(WMO),WMO全球年度至际气候更新。 2022,WMO:瑞士日内瓦。 3。 ebi,K.L。等人,将健康负担检测和归因于气候变化。 Environ Health Perspect,2017年。 125(8):085004。 4。 Vicedo-Cabrera,A.M。等人,归因于最近人类引起的气候变化的热有关死亡率的负担。 nat Clim Chang,2021年。 11(6):p。 492-500。 5。 Ebi,K.L。等人,使用检测和归因来量化气候变化如何影响健康。 健康AFF(Millwood),2020年。 39(12):p。 2168-2174。 6。 美国环境保护局。 气候变化指标:热浪。 2022 [引用2022年12月13日,2022年];可从以下网站获得:https://www.epa.gov/climate-indicators/climate-change-指标 - heat-waves。 7。 IPCC工作组I,P.A。 Arias等人,技术摘要。 2021,剑桥大学出版社:英国剑桥。V. Masson-Delmotte,P。Zhai,H.O。Pörtner和等。2018,剑桥大学出版社:英国剑桥。 2。 世界气象组织(WMO),WMO全球年度至际气候更新。 2022,WMO:瑞士日内瓦。 3。 ebi,K.L。等人,将健康负担检测和归因于气候变化。 Environ Health Perspect,2017年。 125(8):085004。 4。 Vicedo-Cabrera,A.M。等人,归因于最近人类引起的气候变化的热有关死亡率的负担。 nat Clim Chang,2021年。 11(6):p。 492-500。 5。 Ebi,K.L。等人,使用检测和归因来量化气候变化如何影响健康。 健康AFF(Millwood),2020年。 39(12):p。 2168-2174。 6。 美国环境保护局。 气候变化指标:热浪。 2022 [引用2022年12月13日,2022年];可从以下网站获得:https://www.epa.gov/climate-indicators/climate-change-指标 - heat-waves。 7。 IPCC工作组I,P.A。 Arias等人,技术摘要。 2021,剑桥大学出版社:英国剑桥。2018,剑桥大学出版社:英国剑桥。2。世界气象组织(WMO),WMO全球年度至际气候更新。2022,WMO:瑞士日内瓦。3。ebi,K.L。等人,将健康负担检测和归因于气候变化。Environ Health Perspect,2017年。125(8):085004。4。Vicedo-Cabrera,A.M。等人,归因于最近人类引起的气候变化的热有关死亡率的负担。nat Clim Chang,2021年。11(6):p。 492-500。5。Ebi,K.L。等人,使用检测和归因来量化气候变化如何影响健康。健康AFF(Millwood),2020年。39(12):p。 2168-2174。6。美国环境保护局。气候变化指标:热浪。2022 [引用2022年12月13日,2022年];可从以下网站获得:https://www.epa.gov/climate-indicators/climate-change-指标 - heat-waves。7。IPCC工作组I,P.A。 Arias等人,技术摘要。 2021,剑桥大学出版社:英国剑桥。IPCC工作组I,P.A。Arias等人,技术摘要。2021,剑桥大学出版社:英国剑桥。在气候变化2021年:物理科学基础。工作组对气候变化间政府间小组的第六次评估报告的贡献。8。ebi,K.L。等人,极端天气和气候变化:人口健康和卫生系统的影响。Annu Rev公共卫生,2021年。42:p。 293-315。
1 政府间气候变化专门委员会 (IPCC)。“全球变暖 1.5°C:IPCC 关于全球变暖比工业化前水平高 1.5°C 的影响及相关的全球温室气体排放路径的特别报告,在加强全球应对气候变化威胁、可持续发展和消除贫困的努力的背景下。” 2018 年,表 3.2,第 210 至 213 页。 2 Lenton, Timothy M.“气候临界点——不容乐观。”《自然》。2019 年 11 月 27 日;Plumer, Brad。“即使煤炭逐渐减少,2019 年二氧化碳排放量仍创下历史新高。”《纽约时报》。2019 年 12 月 3 日。 3 IPCC (2018),第 12 页。 4 同上。 5 同上。第 9、264 和 447 页。 6 Abram, Nerilie 等人。“决策者摘要。”载于 HO Pörtner 等人(编)。IPCC 关于气候变化中的海洋和冰冻圈的特别报告。2019 年 9 月,第 SPM-7 至 SPM-8、SPM-20 和 SPM-23 页。 7 Diesendorf, Mark 和 Ben Elliston。“100% 可再生电力系统的可行性:对批评者的回应。”可再生和可持续能源评论。第 93 卷。2018 年 10 月,第 318 页和第 320 至 323 页;Brown, TW 等人。“对‘举证责任:对 100% 可再生电力系统可行性的全面审查’的回应。”可再生和可持续能源评论。 92。2018 年 9 月,第 840 至 841 页和第 842 页;Berghout,Niels 等人。国际可再生能源机构 (IRENA)。“可再生能源与能源效率之间的协同作用。”2017 年 8 月,第 11 至 12 页;Strauch,Yonatan。“超越低碳领域:风能、太阳能和电动汽车崛起至制度规模系统的全球临界点。”能源研究与社会科学。第 62 卷。2019 年,第 1 页和第 8 页。
1 德国哥廷根乔治·奥古斯特大学哥廷根医学中心儿科和青少年医学系、儿科神经病学分部。2 德国神经退行性疾病中心 (DZNE) 神经退行性疾病表观遗传学和系统医学系,哥廷根,德国。3 德国哥廷根乔治·奥古斯特大学哥廷根医学中心精神病学和心理治疗系。4 德国哥廷根乔治·奥古斯特大学哥廷根医学中心神经病理学研究所。5 德国哥廷根大学生物网络动力学校园研究所。6 德国哥廷根马克斯·普朗克实验医学研究所。7 德国哥廷根乔治·奥古斯特大学哥廷根医学中心细胞生物化学系。8 德国哥廷根马克斯·普朗克实验医学研究所神经遗传学系。 9 德国哥廷根乔治·奥古斯特大学哥廷根大学医学中心病理学研究所。10 德国弗莱堡大学医学院神经病理学研究所。11 德国弗莱堡大学信号研究中心 BIOSS 和 CIBSS。12 德国弗莱堡大学医学院神经调节基础中心(NeuroModulBasics)。13 德国波恩大学医院临床化学和临床药理学研究所。14 比利时安特卫普热带医学研究所生物医学科学系实验免疫学部。15 德国哥廷根莱布尼茨灵长类动物研究所德国灵长类动物中心功能成像实验室。16 德国莱比锡大学医学物理和生物物理研究所。 17 莱顿化学研究所,莱顿大学,莱顿,荷兰。 18 以下作者贡献相同:Matthias Kettwig、Katharina Ternka。 19 以下作者共同指导了这项工作:Stefan Nessler、Jutta Gärtner。 ✉ 电子邮件:matthias.kettwig@med.uni-goettingen.de
气候变化显着和不利影响了全球环境,生物多样性和可持续的人类发展,主要是通过修改全球温度模式,水文循环和诱导酸性(Habib等,2025)。海洋中的主要反应变量(例如,物理,化学和生物学)可以用作气候变化影响的前哨指标。在当代和即将到来的气候变化情景中,预期的水生生物多样性的灭绝率通常大于陆地物种的灭绝率(Huang等,2021)。小规模的鱼纹(SSFS)显着有助于粮食安全,减轻贫困,就业和维持健康的海洋生态系统(Gatta,2022),因此促进了某些可持续发展的发展目标的实现。尽管是全球数百万的主要生计选择,但SSF遇到了与全球化,气候变化和过度融化相关的不确定性和可变性的升级(Nilsson等,2019)。气候变异性通过影响杂种资源,捕捞者的生计以及更改人口和生产价值来对SSF构成重大危险(Mbaye等人,2023年)。沿海地区尤其容易受到全球变暖的有害影响,这主要是在陆地和海洋因素的收敛中。影响可能是海洋,生态或社会经济。海洋变暖有海洋学的意义包括在杂种季节的改变,弯曲位置的变化以及由于波高和湍流风而引起的与海上活动相关的危险(N'Souvi等,2024)。同时,捕捞收入的不可预测性以及即将来临的气候变化造成的潜在生物多样性损失(Pörtner等人,2023年)分别体现了社会经济和生态经济和生态学的反应。气候变化的其他后果包括沿海水温的变化,降水模式,海平面上升,沿海流量和侵蚀的变化,这显着影响的多样性,分布和丰度,随后影响海洋生物生物系统和生态系统,以及n's sherfculations n s shefivies n's''s''s''''souvient''。例如,海平面的上升通过降低薄壁架的生产力和价值来影响沿海景观和社区的生计(N'Souvi等,2024),从而损害了融化操作的安全性和效率(Bertrand等人,2019年)。此外,降水,暴风雨发生和干旱模式的变化影响了水流量,从而影响了沿海地区的物种运动和招募模式以及盐度水平(Trégarot等,2024)。因此,海温的加速升高(Cheng等,2019),盐度(Cheng等,2020),海平面(Kulp and Strauss,2019),酸性(Cattano等,2018)和脱氧(Kwiatkowski等,2020年),MARRINANT在MARRINANT中,MARRINANT在MARRINANT上,一定的物种和偏移分配,一定的物种和境内迁移。 Venegas等人,2023年),丰度降低(McCauley等,2015),以及生产力的转变(Venegas等,2023),通过改变季节性模式和减少的填充效率和减少的填料(france and france and france and france),从而导致社会经济的影响。