我们报告了CO – P - O纳米颗粒(NPS)的简单制造方法,通过电镀碳布支架上的纳米颗粒(NP)。co - p - o在水电解中表现出异常的双功能催化性催化性,由于中间体的优化吸附能以及钴金属纳米颗粒的出色导电性,同时产生氢(H 2)和氧(O 2)气体。CO - P - O分别以190 mV和280 mV的氢进化反应(HE)和氧气进化反应(OER)达到10 mA/cm 2的几何电流,而其连续的催化纳米粒子在碳纤维上确保具有微小电阻的高电荷运输。观察到,co – p - o电极的性能远远超过了碳布的性能,接近由贵族电催化剂PT/C和RUO 2设置的基准测试。使用CO - P - O电极基于两电池电池的碱性电解器,在1.64 V时表现出双功能水分,在1.64 V和1.98 V时,在10和100 mA/cm 2时。此外,碱性电解剂在50 mA/cm 2的电流密度下表现出稳定的电催化活性。
摘要。对跨纳米界界面的光诱导电荷电流的精确和超快控制可能导致在能量收集,超快电子和连贯的Terahertz来源中的重要应用。最近的研究表明,几种相对论机制,包括逆旋转效应,逆Rashba - Edelstein效应和逆旋转轨道扭转效应,可以将纵向注入的自旋极化电流从磁性材料转化为横向电荷电流,从而使Terahertz Generation均可使用这些电流。但是,这些机制通常需要外部磁场,并且在自旋极化速率和相对论自旋转换的效率方面表现出局限性。我们提出了一种非递归和非磁性机制,该机制直接利用界面上的光激发高密度电荷电流。我们证明了导电氧化物RUO 2和IRO 2的电动各向异性可以有效地将电荷电流偏向横向,从而导致有效和宽带Terahertz辐射。重要的是,与以前的方法相比,这种机制具有更高的转化效率,因为具有较大电动各向异性的导电材料很容易获得,而进一步提高重金属材料的旋转台角度将具有挑战性。我们的发现提供了令人兴奋的可能性,可直接利用这些光激发的高密度电流,用于超快电子和Terahertz光谱。
idylla™平台在欧洲符合2017/746年欧盟IVD规定的CE标记,该法规在美国出售,并在许多其他国家进行了注册。idylla™基因输入测定法仅用于研究用途(RUO),而不是用于诊断程序。该产品包含superscript™III逆转录酶,并根据由Life Technologies Corporation拥有或许可的专利或专利申请提供了许可,该公司的许可仅限于人类诊断领域和研究领域,并专门排除在法医学(包括人类认同测试)中的应用。SuperScript™III商标归Life Technologies Corporation拥有。专利美国7,700,339,8,168,383,8,481,279,8,486,645,8,232,060,8,288,102,8,3777,642,9,988,688,9,523,688,9,523,130,130,9,66,130,9,96,85555 9,364,477、9,539,254、10,551,383,并在US申请及其所有各自的外国等价物中获得了Cell Signaling Technology,Inc.。该外部出版物中提供的数据和结论是由第三方在外部得出的,在开发idylla™GeneFusion测定法中尚未得到验证,也没有由Biocartis NV的当前标记中包含。Biocartis NV产品设计为使用特定于产品的使用(IFU)中所述。idylla™可在欧洲,美国和许多其他国家 /地区出售。请与Biocartis代表一起检查可用性。Biocartis和Idylla™是欧洲,美国和许多其他国家的注册商标。Biocartis拥有的Biocartis和Idylla™商标和徽标是使用的。保留所有权利©2024年1月,Biocartis NV。
环保的期货。4 - 6电化学水分分割过程需要电力,这是通过太阳能电池板或风发电机生成的,这些电池被认为是可持续技术。水分分解涉及两个半细胞反应,其中一种是氢进化反应(她),另一个是氧气进化反应(OER)。在任何一种情况下,水分解都是一种非自发反应,并且伴随着外部能量的使用。但是,通过将电催化剂用作阴极或阳极,可以克服该能量屏障。7,它具有高能量屏障,与她相比,OER半细胞反应在动力学上迟钝,因此,由于缺乏有效的OER反应,不可能通过水分裂解最大的氢产生。为了提高OER半细胞反应动力学的效率,电催化剂在降低水分裂所需的过电位上具有很高的影响,因此可以降低激活能量。8 - 10个基于贵金属的电催化剂,例如Iridium(IRO 2)和ruthenium(Ruo 2),有效的活动,但是它们的稀缺性和成本限制了它们的大规模使用。低成本,简单和高稳定性电催化剂的发展将允许对水分解过程进行调整以扩大应用程序。因此,直接的重点放在非纯粹的电催化剂上,在过去20年中,对更多有效的电催化剂进行了积极的研究,这些电催化剂在其组成中具有最少的贵金属。3,11已研究了几种用于各种电化学应用的材料,包括导电聚合物,碳衍生物,金属氧化物和金属硫磺。尽管过渡金属氧化物,硫化物和导电聚合物具有氧化还原性能,但其工业应用受到其电容有限,低特异性C表面积和不良电导率的限制。5,12最近,储能和转换系统的开发是由金属硫磺的独特特征所构成的,包括它们的丰度,低成本,显着的电导率,高理论电容,易于理论,易于制备和环境友好。13,由于其独特的特征,例如富集的活性位点,较大的表面积和高离子电导率,人们对二维(2D)分层二分法源引起了极大的兴趣。14其中,由于其高电容,催化位点,地球丰度,成本效率和高电荷能力而受到了高度研究的钼de(MOS 2)。15与MOS 2一样,Mo原子位于三明治结构中的两个S原子之间。此外,MOS 2具有三个不同的晶体相,即三角形(1T),六边形(2H)和菱形(3R)。与MOS 2的其他两个阶段相比,2H相高度稳定。在MOS 2中,2H和3R相是半导体的材料,而1T相本质上是金属。热处理可以将3R相变为2H相。16 MOS 2中许多金属氧化态的前提使其成为氧化还原材料和电催化剂。17有证据表明,由于缺乏不饱和边缘作为主动部位和不良电导率的不饱和边缘,她的性能很差。18 - 20 MOS 2已被H 2 O治疗蚀刻,2118 - 20 MOS 2已被H 2 O治疗蚀刻,21