基于活性材料的执行器的集成添加剂制造可能会在跨生物医学工程,机器人技术或航空航天等学科的许多应用中取代常规电动机。在这项工作中,通过由热塑性粘合剂和金属粉末组成的3D打印的纤维打印来证明基于挤出的基于挤出的功能性NITI形状内存合金。两种合金是制造的,一种显示超弹性,另一种在室温下显示形状的内存特性。两种合金的微观结构均具有特征性的特征,并具有透明的热机械特性。3D打印的NITI显示形状的记忆应力为1。分别为1%的超弹性应变1。3%的施加应变为4%。为了扩大形状记忆应力执行器的几何形状,设计,制造和测试。这项研究的结果可能会在活动结构的增材制造领域中找到应用,也称为4D打印。通常,多种材料用于此类结构,这些结构通常会遭受机械性能和耐用性不佳的影响。在这项工作中对金属材料的使用可能有助于克服这些局限性。2022作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要 —6G 技术的出现为物联网 (IoT) 的空前进步铺平了道路,开创了超连接和无处不在的通信时代。然而,随着 6G 物联网生态系统中互联设备的激增,恶意入侵和新网络威胁的风险变得更加突出。此外,人工智能融入 6G 网络带来了额外的安全问题,例如对抗性攻击人工智能模型的风险以及人工智能可能被滥用于网络威胁。因此,在 6G 环境中,保护广泛而多样的连接设备是一个巨大的挑战,需要重新考虑以前的安全传统方法。本文旨在通过提出一种依赖于人工智能和区块链技术的新型协作入侵检测系统 (CIDS) 来应对这些挑战。所提出的 CIDS 的协作性质促进了一种集体防御方法,其中物联网网络中的节点主动共享威胁情报,从而实现快速响应和缓解。通过全面的模拟和概念验证实验评估了所提系统的有效性。结果表明,该系统能够有效检测和缓解伪造和零日攻击,从而加强 6G 物联网环境的安全基础设施。索引术语 —AI、区块链、6G 网络、安全、协作入侵检测、零日攻击、安全
抽象经典,即非量词,通信包括具有多输入多输出(MIMO)通道的配置。一些相关的信号处理任务以对称方式考虑这些通道,即通过将相同的角色分配给所有通道输入,并且与所有通道输出类似。这些任务特别包括通道识别/估计和通道均衡,并与源分离紧密连接。他们最具挑战性的版本是盲人,即当接收器几乎没有关于发射信号的事先知识时。其他信号处理任务以不对称的方式考虑经典的通信通道。这尤其包括当发射器1通过主唱机向接收器1发送数据时的情况,而“入侵者”(包括接收器2)会干扰该通道以提取信息,从而执行所谓的窃听,而重新CEN-CETER 1可以瞄准检测该侵入率。上述处理的一部分
物联网(IoT)在现代生活中广泛使用,例如在智能家居,智能运输等中。但是,由于物联网对恶意袭击的脆弱性,目前的安全措施无法完全保护该物联网。入侵检测可以保护物联网设备作为安全工具的最有害攻击。然而,常规入侵检测方法的时间和检测效率需要更准确。本文的主要贡献是开发一个简单的智能安全框架,以保护物联网免受网络攻击。为此,在拟议的工作中开发了决定性的红狐(DRF)优化和描述性背部传播径向函数(DBRF)分类的组合。这项工作的新颖性是,与机器学习算法合并的最近开发的DRF优化方法可用于最大化物联网系统的安全水平。首先,进行数据预处理和归一化操作以生成平衡的物联网数据集,以提高分类的检测准确性。然后,应用DRF优化算法以最佳调整精确入侵检测和分类所需的功能。它还支持提高训练速度并降低分类器的错误率。此外,还部署了DBRF分类模型,以使用优化的功能对正常和攻击数据流进行分类。在这里,建议的DRF-DBRF安全模型的性能使用五个不同且流行的IOT基准测试数据集进行了验证和测试。最后,通过使用各种评估参数将结果与先前的异常检测方法进行比较。
各位同仁,挤压加工是目前金属及合金塑性成形的常用方法。近年来,除了改进直接/间接挤压加工方法外,新的技术也不断被提出。金属及合金挤压的成形机理,包括材料最终性能的控制与表征以及挤压加工过程中被激活的成形机理的分析,是本期特刊的研究范围。基础研究与技术创新推动挤压技术的融合,发现现有的不足,尝试突破,不断将新的研究课题和发展路径推向前沿尤为重要。本期特刊欢迎关注新型挤压技术及其对材料最终力学性能和成形性的影响的文章,包括钢材和有色合金(镁/铝/钛合金等)。
量子计算有望彻底改变我们对计算限制的理解,并且它在加密术中的含义长期以来已经很明显。今天,密码学家正在积极设计量子解决方案,以应对支持量子的对手所构成的威胁。同时,量子科学家正在创新量子协议,以增强捍卫者的能力。但是,仍需要探索量子计算和量子机学习(QML)对其他网络安全域的更广泛影响。在这项工作中,我们研究了QML对传统ML网络安全应用的潜在影响。首先,我们探讨了与网络安全特别相关的机器学习问题中量子计算的潜在优势。然后,我们描述了一种量化易于故障QML算法对现实世界问题的未来影响的方法。作为一个案例研究,我们将方法应用于网络入侵检测中的标准方法和数据集,这是机器学习在网络安全中研究最多的应用之一。我们的结果提供了有关获得量子优势的条件以及对未来量子硬件和软件进步的需求的洞察力。
抽象的水下无人机对于科学研究,环境监测和海上操作至关重要,可以在具有挑战性的环境中收集数据。然而,他们的部署面临着低带宽,高潜伏期,信号衰减以及由于流动性和水流而导致的间歇性连通性等问题。在这些条件下,传统的集中数据处理方法效率低下,因为它们需要将大量原始数据传输到中心位置。为了应对这些挑战,本研究提出了专门针对水下网络量身定制的联合学习(FL)框架。与集中式方法不同,FL使水下无人机可以通过在本地处理数据并仅与中央服务器共享模型更新来协作训练全球入侵检测模型。这种方法可以通过确保敏感信息永远不会离开本地设备,从而降低传输过程中拦截或妥协的风险来显着提高数据安全性。此外,FL的分散体系结构固有地与水下无人机网络的动态和分布式性质保持一致。提出的框架通过利用各个无人机的局部见解来检测威胁,包括零日攻击,而无需直接暴露敏感数据,从而改善了网络入侵检测。通过保留隐私并实现协作异常检测,FL解决了水下互联网事物中的关键网络安全挑战(IOUT)。
一些研究论文研究了基于 ML 的 IDS 面对对抗性攻击的脆弱性,但其中大多数集中在基于深度学习的分类器上。与它们不同,本文更加关注浅层分类器,由于它们的成熟度和实现的简单性,它们仍然广泛用于基于 ML 的 IDS。更详细地,我们评估了 7 种基于浅层 ML 的 NIDS 的鲁棒性,包括 Adaboost、Bagging、梯度提升 (GB)、逻辑回归 (LR)、决策树 (DT)、随机森林 (RF)、支持向量分类器 (SVC) 以及深度学习网络,以抵御几种在最先进技术 (SOA) 中广泛使用的对抗性攻击。此外,我们应用高斯数据增强防御技术并测量其对提高分类器鲁棒性的贡献。我们使用 NSL-KDD 基准数据集 [5] 和 UNSW-NB 15 数据集 [50] 在不同的场景中进行了广泛的实验。结果表明,攻击对所有分类器的影响并不相同,分类器的稳健性取决于攻击,并且必须根据网络入侵检测场景考虑性能和稳健性之间的权衡。
摘要 - 对基于ML的车载入侵检测系统(IV-ID)进行了重大研究,但这些系统的实际应用需要进一步完善。IV-IDS的关键性性质要求进行精确和审视的评估和可行性评估指标。本文通过进行严格的基于ML的IV-IDS分析来满足这种需求。我们对最近的汽车取证研究进行了详尽的审查,这些研究焦点介绍了与工具网络相关的约束以及相关的安全/安全要求,以揭示现有文献中当前的差距。通过解决IV-IDS中AI的局限性,本文有助于现有的研究语料库,并定义了车载网络系统的相关基线指标。本质上,我们将现实世界自动驾驶汽车的要求与安全域的要求调和,从而评估了基于AI的入侵检测系统的可行性。索引术语 - 机器学习,入侵检测,前提,车载网络
“在当前的政治和经济环境下,AO Girikond、AO NZPP Vostok 和 AO Elekond 等主要第三方组件供应商已将交付时间延长至 540 天,相当于交付给 AO SKTB RT 的产品供应合同履行时间的 150%。此外,AO Gruppa Kremniy-EL、AO Angstrem、AO VZPP-S、OAO Integral 等主动组件供应商依赖进口材料和化学品供应,难以保证向 AO SKTB RT 交付产品,”该文件写道,该文件是我们在有组织犯罪和腐败报告项目 (OCCRP) 的帮助下获得的。