铂族金属钌基疗法因其可接受的生物学和丰富的抗癌特性而备受关注。[1] 顺铂、奥沙利铂和卡铂等铂基抗癌药物对多种癌细胞均有疗效,但缺乏选择性、溶解性和其他副作用,促使研究人员开发不同于传统药物的抗癌剂。[2] 因此,有多个关于钌配合物的报道,这些配合物已被用于可能的“钌疗法”框架内的抗癌研究。[3] NAMI-A、[4] KP1019、[5] 及其钠盐类似物 (N)KP-1339、[6] 是已进入人体和临床试验阶段的钌配合物。[7] RAPTA 是
摘要:对绿色氢的需求引起了人们对氧气进化反应催化剂中使用的虹膜的可用性的关注。我们借助机器学习辅助计算管道识别催化剂,该计算管道接受了36,000多种混合金属氧化物的训练。管道准确地预测了来自未删除的结构的Pourbaix分解能(G PBX),平均绝对误差为每个原子77 MeV,使我们能够在酸性条件下筛选2070个新的金属氧化物。搜索将RU 0.6 Cr 0.2 Ti 0.2 O 2识别为具有提高耐用性的候选者:实验,我们发现它在100 mA cm-2时提供了267 mV的超电势,并且它在此电流密度以上并在200 h以上运行,并表现出超过200 h的速率增加25μVH-h-1。表面密度的功能理论计算表明,Ti增加了金属 - 氧的共价,这是提高稳定性的潜在途径,而CR降低了HOO *形成率确定的步骤的能量屏障,与RUO 2相比,活动增加了活性,并在100 mA CM-2下将超电位降低40 mV,同时维持稳定性。原位X射线吸收光谱和EX PTYCHOPHICONGE-扫描X射线显微镜显示反应过程中可稳态结构的演变,与RUO 2相比,RU质量溶解减慢了20倍,并抑制了晶格氧的参与度> 60%。■简介
14:40-14:52 CL-S6-3 Patrick Stargardt确定玻璃的非常低的气体通透性,用于潜在的高压氢存储应用14:52-15:04 Cl-S6-4 selvakumar selvakumar jayaprakasam jayaprakasam lanthanides分离兰特尼德尼德岛(LN,CE,CE,CE,ND)2-3-2 O-Tio 2 -Fe 2 O 3)玻璃15:04-15:16 Cl-S6-5 Takashi Kato Glass Briquet Feeding,用于从Mox支出的燃料中使用HLW的玻璃;使用X射线成像15:16-15:28 Cl-S6-6 BARTLOMIEJ GAWEL高纯度石英的原位观察PV玻璃坩埚具有优质的机械性能15:28-15:40CloéLaurinLaurin Laurin Laurin Ruthenium ruthenium ruthenium ruthenium ruthenium in rosilosilicate Glass Melts for Guotocialicate Glass Melts for Guole Waster Vistrification
14:40-14:52 CL-S6-3 Patrick Stargardt确定玻璃的非常低的气体通透性,用于潜在的高压氢存储应用14:52-15:04 Cl-S6-4 selvakumar selvakumar jayaprakasam jayaprakasam lanthanides分离兰特尼德尼德岛(LN,CE,CE,CE,ND)2-3-2 O-Tio 2 -Fe 2 O 3)玻璃15:04-15:16 Cl-S6-5 Takashi Kato Glass Briquet Feeding,用于从Mox支出的燃料中使用HLW的玻璃;使用X射线成像15:16-15:28 Cl-S6-6 BARTLOMIEJ GAWEL高纯度石英的原位观察PV玻璃坩埚具有优质的机械性能15:28-15:40CloéLaurinLaurin Laurin Laurin Ruthenium ruthenium ruthenium ruthenium ruthenium in rosilosilicate Glass Melts for Guotocialicate Glass Melts for Guole Waster Vistrification
与其他过渡金属氧化物相比,RuO 2 具有独特且有前途的性能。RuO 2 因其卓越的异相催化 [1] 和电催化 [2] 能力而闻名。它是一种导电性极强的氧化物(≈ 35 µΩ cm),电阻率与钌金属相当。这种材料的化学和热稳定性增加了它的吸引力。此外,钌的稀缺性和高成本要求我们了解 RuO 2 的微观特性。[3] RuO 2 薄膜具有低电阻率、优异的扩散阻挡性能、高温稳定性和耐化学腐蚀性,在大规模集成电路中有着广泛的应用。[4,5] 除了 Ru 之外,RuO 2 还可用作铜沉积的种子层。 [6,7] 它具有比 Pt 更好的蚀刻能力,这意味着 RuO2 可以借助 O2/CF4 放电中的反应离子蚀刻 (RIO) 轻松图案化。[8] 最近还有研究表明,RuO2 可以作为下一代 Ru 基互连中 Ru 扩散的优异阻挡层。[9]
抽象的贵金属氧化物(例如二氧化芳族)是酸性电解质中阳极反应的高度活性电催化剂,但是电化学操作期间的溶解阻碍了在可再生能源技术中的广泛应用。改善对纳米晶体等应用相关形态的溶出动力学的基本理解对于这些材料的网格尺度实施至关重要。在本文中,我们报告了在氧化条件下二氧化碳纳米晶体溶解期间通过液相透射电子显微镜观察到的纳米级异质性。单晶唯一二氧化物纳米晶体可直接观察沿不同晶体学方面的溶解度,从而可以对晶体方面的稳定性进行前所未有的直接比较。纳米级观察结果揭示了横跨不同纳米晶体的晶体相相的相对稳定性的实质异质性,这归因于这些晶体中存在的纳米级菌株。这些发现突出了纳米级异质性在确定诸如电催化剂稳定性之类的宏观特性中的重要性,并提供了一种可以将其集成到下一代电催化剂发现工作中的特征方法。简介
抽象的光活化化学疗法剂表明,在光的作用(包括处于慢性低氧条件下的光)下,杀死癌细胞的能力有希望。这些化合物构成了物理靶向抗癌药物的新分支,对患者的全身副作用可能较低。另一方面,很少有关于光透射的氟夹笼和光透射抗癌抑制剂之间细胞内相互作用的信息。在这项工作中,我们报告了胶质母细胞瘤癌细胞系U87mg中光活化化学疗法化合物RU-STF31的生物学研究。RU-STF31靶向烟酰胺磷酸贝糖基转移酶(NAMPT),这是一种在胶质母细胞瘤中过表达的酶。ru-STF31通过红光照射激活,它在基于氟芬氏菌的笼子和NAMPT抑制剂STF31之间打破了键,从而释放了两个光蛋白:氟球蛋白笼和细胞毒性抑制剂STF31。ru-STF31在水和抗癌功效中的溶解度明显更高。它还显着降低了细胞内NAD +水平,不仅在常氧化(21%O 2)中,而且在低氧(1%O 2)U87mg细胞中也显着降低了。引人注目的是,无法通过添加细胞外NAD +来营救缺氧U87MG细胞中RU-STF31的NAD +耗竭。我们的数据表明,光激活释放的钌光电量的积极作用。
摘要:本文概述了具有抗癌活性的各种金属配合物的开发、结构和活性。化学研究人员继续致力于开发和合成可作为抗肿瘤药物的新分子,以实现更有利的治疗。因此,了解各种化疗物质及其作用方式非常重要。本综述重点介绍含有金属作为关键结构片段的金属药物,顺铂为其化疗应用铺平了道路。本文还研究了钌配合物,包括磷光钌 (II) 配合物的治疗应用,强调其在治疗和诊断中的双重作用。此外,还讨论了钛和金衍生物的抗肿瘤活性、副作用以及正在进行的提高其疗效和减少不良反应的研究。还强调了用各种金属离子对宿主防御肽 (HDP) 进行金属化是一种通过拓宽其作用机制来显着增强其抗癌活性的策略。
1。Philibert,C。可再生能源交叉边界:Ammonia等。在NH3事件中。2017。鹿特丹。2。Millar,R。等人,累积碳预算及其含义。牛津经济政策评论,2016年。32(2):p。 323-342。3。Aika,K.,Takano,T。&Murata,S。无氯氟丁氏催化剂的制备和表征以及氨合成中的启动子效应:3。镁支持的钌催化剂。J. Catal。 1992。 136,126–140。 4。 Kitano,M。等。 使用稳定电气作为电子供体和可逆氢存储的氨合成。 自然化学。 2012。 4,934–940。 5。 Sato K.等。 在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。 化学。 SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。J. Catal。1992。136,126–140。4。Kitano,M。等。 使用稳定电气作为电子供体和可逆氢存储的氨合成。 自然化学。 2012。 4,934–940。 5。 Sato K.等。 在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。 化学。 SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。Kitano,M。等。使用稳定电气作为电子供体和可逆氢存储的氨合成。自然化学。2012。4,934–940。5。Sato K.等。 在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。 化学。 SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。Sato K.等。在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。化学。SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。SCI。2017。8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。8,674–679。6。Kyriakou V,Garagounis I,Vasileiou E等。氨的电化学合成的进展。CATAL今天2017年。286,2-13。7。ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。法拉第讨论2016年。190,307–326。8。Bañares-Alcántara,R。等,对基于氨的储能系统的分析。2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。2015,牛津大学:英国牛津大学。p。 158。2017。10。9 Philibert,C。生产氨和肥料:可再生能源的新机会。Olson,N。“ NH3-世界上最佳能源解决方案”,在2017年NH3活动,鹿特丹,2017年5月18日至19日。Olson,N。“ NH3-世界上最佳能源解决方案”,在2017年NH3活动,鹿特丹,2017年5月18日至19日。
钌催化剂促进氨分解:传统固定床、膜辅助和催化膜反应器的比较研究 Domenico Maccarrone、Gianfranco Giorgianni、Serena Agnolin、Siglinda Perathoner、Gabriele Centi、Fausto Gallucci、Salvatore Abate
