水氧化被认为是人工光合作用中水分分裂的瓶颈,由于其在可再生能源技术中的潜在影响,它在半个世纪中受到了不断的关注[1 E 3]。在各种水氧化催化剂(WOC)中,据信多氧盐(POM)是具有较高离职频率的活性物种之一。最多研究的POM作为WOC是含四硫乙烷的POM,在同质和异质电化学驱动的水氧化条件下已在同质和异质性的电化学[4,5]中进行了测试[4,5]。然而,唯一的自然稀缺性大规模限制了其进一步的应用。因此,寻找强大,有效和廉价的WOC似乎是主要挑战之一。在各个WOC中,基于锰的
摘要:超分子表面活性剂为构造太阳能燃料合成系统的多功能平台,例如,通过将两亲光感应器和催化剂的自组装成各种超分子结构。然而,在太阳能燃料生产中对两亲光的光敏剂的利用主要集中在产生气态产物上,例如分子氢(H 2),一氧化碳(CO)和甲烷(CH 4),而甲烷(CH 4)的合成催化剂(TON)的合成催化剂属于合成催化剂,通常是在数百万范围内的合成催化剂。受到生物脂质 - 蛋白质相互作用的启发,我们在此提出了一种新型的生物杂交组装策略,该策略利用光敏剂作为表面活性剂形成胶束支架,该胶束支架与酶(即氢化酶),即半人工光合作用。具体而言,具有[ruthenium tris(2,2'-二吡啶)] 2+头组与酶相关时具有高光催化活性的表面活性剂,因为它们具有阳性带电的[RU] 2+中心的静电相互作用,可以与酶相互作用,以与酶相互作用,以使胶束上的电子转移在胶束eNzeme-Enzyzyzyzyzeme-Enzyzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme界面相互作用。时间分辨的吸收和发射
摘要 自然系统通过高效和宽带能量捕获来驱动光合作用的高能反应。过渡金属光催化剂同样将光转化为化学反应性,但受限于光操作并且需要蓝光至紫外激发。在光合作用中,光捕获和反应性都通过分离到不同的位点得到了优化。受这种模块化架构的启发,我们通过将光合集光蛋白 R-藻红蛋白 (RPE) 共价连接到过渡金属光催化剂三(2,2 0-联吡啶)钌(II) ([Ru(bpy) 3 ] 2+ ) 来合成生物混合光催化剂。光谱研究发现,吸收的光能有效地从 RPE 转移到 [Ru(bpy) 3 ] 2+ 。生物混合光催化剂的实用性通过增加硫醇-烯偶联反应和半胱氨酰脱硫反应的产率来证明,包括在红光波长下恢复反应性,其中[Ru(bpy) 3 ] 2+单独不吸收。
癌症是世界上最致命的疾病之一。目前,有各种类型的抗癌药物用于治疗癌症,但它们仍然有各种副作用,会影响患者的生活质量。有机金属配合物(OCO)是由与碳原子结合的金属原子组成的化合物。OCO 具有多种用作抗癌药物的潜力,包括其特异性靶向癌细胞、抑制癌细胞生长和减少其他抗癌药物副作用的能力。OCO 的作用机制涉及与细胞内的亲核分子(包括 DNA、RNA 和蛋白质)的相互作用,以及形成额外的铂产物。在这篇综述中,我们将讨论可以作为抗癌药物的有机金属化合物,例如铂、钌、铁、卡铂和奥沙利铂,它们已被证明可有效对抗癌症。我们还将讨论这些化合物在癌细胞中的作用机制以及可以用有机金属化合物治疗的癌细胞类型。
在过去几年中,对白金药物的兴趣增加了。成功的治疗在很大程度上取决于复杂的治疗和早期诊断,这决定了风险群体,临床症状知识的重要性,以及针对生物标志物,活检和诊断成像的诊断方法的有针对性使用,以便早期发现恶性过程。今天,单目标策略正在用多目标疗法策略取代,该策略在具有定义的生物标志物的肿瘤中获得了更大的临床功效。关键的速度包括阐明对这些药物的肿瘤抗性机制,一些新的基于铂基的药物的引入以及使用具有抗性调节剂或新药物针对药物的铂药物的临床组合研究。使用脂质体或基于共聚物的产品,在早期的临床试验中已经研究了铂药向肿瘤的递送。其他作为抗癌剂的研究是唯一的和铁配合物。ln(iii)复合物已被证明具有抗氧化活性。
金属配合物因其在生物领域的用途而被认为在治疗中起着至关重要的作用 [1,2]。由于过渡金属配合物在生物技术和癌症治疗中的广泛用途,对过渡金属配合物与 DNA 之间相互作用的研究引起了广泛的兴趣 [3-8]。金属配合物是具有生物学意义的一类重要化学物质。这类物质在医学上经常用作 MRI 中的造影剂、放射性药物、溃疡和关节炎的治疗以及癌症的化疗。通常使用许多实验方法来追踪中性 pH 水溶液中 DNA 与金属配合物之间的相互作用,作为金属配合物-DNA 摩尔比的函数,这可能为这种联系提供间接证据 [9]-。铂和钌离子是迄今为止研究最多的金属离子,被认为是可能的抗癌药物的配位中心。许多抗癌药物以 DNA 作为关键靶分子。为了了解药物分子如何与 DNA 相互作用,研究了与 DNA 结合的金属配合物。
应用C轴压缩应变是促进仍在研究的二氧化丁烷(RUO 2)中超导性的一种方法。先前的研究发现,当在二氧化钛(TIO 2)底物上生长在RUO 2中的C轴压缩与其超导性能之间的关系,该底物在样品中实现了4.7%C轴晶格不匹配。2我们的研究的重点是进一步研究这种关系,通过测试RUO 2在其他底物上的增长来促进超导性,这些底物可以产生类似程度的晶格不匹配。合格的基板必须具有与RUO 2相似的足够的晶格结构,以在有效范围内施加应变,还必须测试其确切限制。1先前测试的唯一底物是类似的市售金红石,2因此,我们的研究包含一些更外来的底物,即合成的alexandrite(al 2 beo 4)。我们的结果确定了使用合成alexandrite作为在RUO 2中产生菌株诱导超导状态的底物的可行性。
社会面临着巨大的挑战,以维持和改善世界上每个人的生活,涉及健康,环境,能源,食物,水,最后但并非最不重要的是和平。尽管许多方面在实现这些目标方面发挥了作用,但资源的可用性及其可持续用途仍处于保证社会福祉的最前沿。化学将是提供解决方案的主要力量,现在,如果没有化学在合成和催化中所做的贡献,世界就无法维持世界。尽管化学的进步取得了巨大进步,但随着世界不断增长的人口和减少的化石原料,仍需要开发新的合成方法和技术,以实现可再生资源作为化学生产基础的转型。催化在驱动化学过程中起着重要作用。然而,催化剂通常是基于通常比黄金稀少的贵金属,这使得它们被土壤丰富的金属替代,这是对未来的巨大需求。结合了光催化和流动化学等新兴技术,可再生原料用3D的金属催化剂的催化转化是最大的挑战之一,但也是几代人将获得可持续未来的最大希望之一。本课程将在可再生资源转换的背景下概述当前的合成和催化状态,重点是用3D-Metal的催化剂,例如Iron,Iron,cobalt,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickel,Nickelt,catalys,Palladium,Rhodium或Ruthenium等珍贵金属催化剂。
金属氯化物配合物在温和条件下与Tris(三甲基甲硅烷基)磷酸反应,以产生金属磷化物(TMP)纳米颗粒(NPS),而氯甲基甲硅烷则作为副产物。与起始M-CL键更强的Si-Cl键的形成是反应的驱动力。通过使用[RUCL 2(Cymene)]和Tris(Trimet-hylsilyl)磷酸在35°C中制备该策略的潜力。将小(1.3 nm的直径为1.3 nm)和无定形NP形成,其整体RU 50 P 50组成。有趣的是,这些NP可以很容易地固定在功能支持材料上,这对于在催化和电催化中的潜在应用引起了极大的兴趣。mo 50 P 50和CO 50 P 50 NP也可以按照相同的策略合成。这种方法简单且通用,并为在轻度反应条件下制备广泛的过渡金属磷化物纳米颗粒的方式铺平了道路。
