9 大希腊 卡坦扎罗大学 UNICZ 大学 10 巴里大学 - 阿尔多莫罗 UNIBA 大学 11 帕尔马大学 - 分支 1 UNIPR 大学 12 佛罗伦萨大学 UNIFI 大学 13 IRCCS 圣马蒂诺综合医院 HSM 医院 14 IRCCS 博洛尼亚神经科学研究所 ISNB 医院 15 比萨圣安娜高等研究院 SSSA 医院 16 Bambino Gesù 儿童医院 OPBG 医院 17 欧洲脑研究所 Rita Levi-Montalcini EBRI 基金会 18 IRCCS SYNLAB SDN SYNLAB 医院 19 Telethon 基金会 ETS TIGEM 基金会 20 Don Carlo Gnocchi 基金会 ONLUS-IRCCS FDG 医院 21 IRCCS 圣拉斐尔 SR 医院 22 Dompè Farmaceutici DOMPE' 公司 23 Alfasigma ALFASIGMA 公司 24 ASG 超导体 ASG 公司 25 TAKIS Srl TAKIS 公司 表 A1:合作伙伴名单
储存器计算 (RC) [1, 2] 是一种循环神经网络,近年来因其训练成本低、可通过专用电路 [3, 4] 和物理 RC [5, 6] 在硬件上实现而备受关注。RC 由储存器部分和读出部分组成,储存器部分接收时间序列输入并将其非线性转换为高维空间以表示输入的时空模式,读出部分从储存器部分拾取一些模式来分析输入并生成输出。RC 的主要优势是除读出部分之外的权重连接都是固定的。因此,与深度神经网络相比,其训练所需的数据量更少,计算成本更低。因此,RC 适用于计算资源有限且无需云计算即可执行训练的边缘 AI 系统。 RC 的读出大多由线性模型(单层感知器)实现,因此,读出的适应训练数据的能力有限。为了增强 RC 的训练能力,我们提出了一个具有多个读出的 RC 模型,该模型将一个读出的训练分散,以便每个读出可以专注于特定类型的训练数据。该方法可以看作是一种集成学习,用于增强 RC 泛化性能。简单地增加读出的数量对于边缘 AI 系统来说是低效的,因为它会消耗系统中有限的内存资源。本研究引入了一种自组织函数,它能够使用
抽象的生物电子医学通过感测,处理和调节人体神经系统中产生的电子信号(被标记为“神经信号”)来治疗慢性疾病。虽然电子电路已经在该域中使用了几年,但微电子技术的进展现在允许越来越准确且有针对性的解决方案以获得治疗益处。例如,现在可以在特定神经纤维中调节信号,从而靶向特定疾病。但是,要完全利用这种方法,重要的是要了解神经信号的哪些方面很重要,刺激的效果是什么以及哪些电路设计可以最好地实现所需的结果。神经形态电子电路代表了实现这一目标的一种有希望的设计风格:它们的超低功率特征和生物学上可行的时间常数使它们成为建立最佳接口到真正神经加工系统的理想候选者,从而实现实时闭环与生物组织的闭环相互作用。在本文中,我们强调了神经形态回路的主要特征,这些电路非常适合与神经系统接口,并展示它们如何用于构建闭环杂种人工和生物学神经加工系统。我们介绍了可以实施神经计算基础的示例,以对这些闭环系统中感应的信号进行计算,并讨论使用其输出进行神经刺激的方法。我们描述了遵循这种方法的应用程序的示例,突出了需要解决的开放挑战,并提出了克服当前局限性所需的措施。
摘要我们先前已经描述了在成年爪诺司纳布斯Laevis神经系统中仅表达的几个基因的分离,并在神经诱导后不久在胚胎中激活。这些cDNA的一个24-15的序列将相应的蛋白质识别为(Na',K+-ATPase的3个亚基[ATP磷酸化水酶(Na+/ K+-transporting); EC 3.6.1.37]。这种形式与先前所描述的(31个爪蟾亚基)不同,蛋白质序列比较表明它不是哺乳动物的青蛙同源物(82个亚基;因此,我们将24-15蛋白称为(na',na',k+-Atpase的33个亚基。抗血清针对(83个亚基融合蛋白检测到成人脑提取物中的蛋白质,其大小和特性是Na',K+-ATPase(3个亚基。在Xenopus中(31和33个亚基表示为相似水平的母体mRNA;在胚胎发生期间快速积累(33个mRNA在第14阶段开始(早期神经拉拉),快速积累(31个mRNA在阶段开始,在23/24阶段。反义RNA探针与t骨脑切片的原位杂交表明(33个亚基在整个发育中的大脑中表达。我们建议(33是主要的Na',K+-ATPase(在青蛙早期神经系统发育过程中存在8个亚基。
摘要本文的特定目的在于:为材料科学、化学或电子学等领域的读者提供利用其材料系统实施储层计算 (RC) 实验的概述。关于该主题的介绍性文献很少,绝大多数评论都提出了 RC 的基本概念,这些概念对于不熟悉机器学习领域的人来说可能并不简单(例如,参见参考文献 Lukoˇseviˇcius (2012 Neural Networks: Tricks of the Trade (Berlin: Springer) pp 659–686)。考虑到大量表现出非线性行为和短期记忆的材料系统可用于设计新颖的计算范式,这是令人遗憾的。RC 提供了一个使用材料系统进行计算的框架,该框架可以避免在硬件上实现传统的、功能齐全的前馈神经网络时出现的典型问题,例如最小的设备间变异性以及对每个单元/神经元和连接的控制。相反,可以使用随机的、未经训练的储存器,其中仅优化输出层,例如使用线性回归。在下文中,我们将重点介绍 RC 在基于硬件的神经网络中的潜力,以及相对于更传统的方法,以及在实施过程中需要克服的障碍。准备一个高维非线性系统作为特定任务的高性能储存器并不像乍看起来那么容易。我们希望本教程能够降低科学家试图利用他们的非线性系统进行通常在机器学习和人工智能领域执行的计算任务的障碍。与本文配套的模拟工具可在线获取 7 。
近年来,肠道菌群与中枢神经系统 (CNS) 发育之间的关联引起了广泛的研究关注。有证据表明,CNS 和肠道菌群通过脑肠轴进行双向交流。作为一个长期而复杂的过程,CNS 发育极易受到内源性和外源性因素的影响。肠道菌群通过调节神经发生、髓鞘形成、神经胶质细胞功能、突触修剪和血脑屏障通透性来影响 CNS,并与各种 CNS 疾病有关。本综述概述了肠道菌群与 CNS 发育阶段(产前和产后)之间的关系,强调了肠道微生物的不可或缺的作用。此外,本综述还探讨了肠道菌群在神经发育障碍(如自闭症谱系障碍、雷特综合征和安格曼综合征)中的影响,为早期发现、及时干预和创新治疗提供了见解。
6 神经免疫学实验室,IRCCS Mondino 基金会,帕维亚,意大利, 7 神经病学和中风科,佩斯卡拉“ Spirito Santo ”医院,佩斯卡拉,意大利, 8 UOC Neurologia O.S.A.- 意大利帕多瓦大学医院,9 意大利维琴察圣博尔托洛医院 AULSS8 Berica 神经内科,10 意大利布雷西亚大学临床和实验科学系神经内科,11 意大利布雷西亚布雷西亚大学医院 ASST Spedali Civili 持续护理和虚弱科神经内科,12 意大利布雷西亚大学数字神经病学和生物传感器实验室,13 法国副肿瘤神经系统综合征和自身免疫性脑炎参考中心,里昂临终关怀医院,神经病学医院,布隆,法国,14 MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314,里昂第一克劳德伯纳德大学,里昂,法国,15 神经内科,Hôpital Pitié Salpétrière,Assistance Publique des Ho ˆpitaux de Paris,巴黎,法国
这段话让我们向所有参与者、组织者和团队致意,并提醒我们,与特技飞行一样,自行车运动也是一项以团队形式进行的个人运动。空军和太空军飞机的飞越凸显了自行车手和军事及体育飞行员共同的诸多价值观:承诺、自我完善和激情。
中苏门答腊盆地是一个具有巨大石油和天然气潜力的沉积盆地。利用这一潜力所做的努力之一是利用地震方法进行地球物理勘探。地震方法是提供地球地下状况(例如层结构、地质结构、碳氢化合物指标以及储层的物理性质)清晰图像的最优秀方法。本研究采用了地震反演方法和地震属性方法。使用的地震属性是均方根 (RMS) 和包络属性。同时,所采用的地震反演是声阻抗反演(AI)。 RMS 和包络属性有助于绘制地震波的最大振幅,这些地震波反映了地表以下的密度或岩性差异,并指示了具有储层潜力的区域的存在。声阻抗反演可以绘制某一层的声阻抗值,可以有效定量指示岩性、孔隙度和储层特征的差异。均方根 (RMS) 和包络属性显示“FAP”油田 Telisa 地层顶部的亮点区域,而日志数据显示 Telisa 地层中存在碳氢化合物。研究区碳酸盐岩储层声阻抗值分布在15000((Ft/s)*(g/cc))~30000((Ft/s)*(g/cc))范围内。 “FAP”油田碳酸盐岩储层孔隙度为0.18~0.3(V/V),密度为2.2~2.4(g/c3)。关键词:苏门答腊盆地中部,RMS 属性,包络属性,反演
原发性中枢神经系统淋巴瘤(PCNSL)是与中枢神经系统相关的非霍奇金淋巴瘤(NHL)。大多数患者最终出现复发/难治性(R/R)PCNSL,PCNSL的总体预后仍然令人沮丧。最近,基因测序,转录组测序和单细胞测序平台提供了大量数据,揭示了PCNSL中发病机理和耐药性的基础机制,包括肿瘤细胞中NF-K B信号途径的激活,肿瘤细胞,肿瘤的异质性和免疫质量tumoremronosemronosmorodronenment。PCNSL分子病理学研究的进步已导致确定新的治疗靶标并开发新的药物。新的治疗策略,例如创建小分子靶向剂,免疫调节药物,免疫检查点抑制剂和嵌合抗原受体T(CAR-T)细胞疗法,为PCNSL患者带来了新的希望,尤其是R/R PCNSL。本综述提出了PCNSL治疗,审查和讨论有针对性治疗和免疫疗法的效率和挑战的最新进展,并为PCNSL治疗策略的未来发展提供了前景。
