摘要 尽管已推出多种新药和联合疗法,但传统的地塞米松仍然是多发性骨髓瘤 (MM) 治疗的基石。然而,其应用受到常见不良反应的限制,其中感染率的增加可能对临床产生最大的影响。将地塞米松封装在长循环 PEG-脂质体中可以提高其在 MM 中的疗效-安全性比,从而既增强了药物向 MM 病变的输送,又减少了全身皮质类固醇的暴露。我们在一项 I 期开放标签非对比介入试验中,以两种剂量水平评估了单次静脉 (iv) 输注聚乙二醇化脂质体地塞米松磷酸盐 (Dex-PL) 对接受过大量治疗的复发或进展性有症状 MM 患者的初步安全性和可行性。在入选的 7 名患者中(由于招募速度太慢,研究不得不提前结束),发现 Dex-PL 耐受性良好,而且与传统地塞米松相比,未检测到新的或意外的不良事件。药代动力学分析表明,静脉注射后,地塞米松在血液循环中的浓度持续较高且持续超过一周,这可能是由于脂质体的长循环半衰期所致,脂质体将地塞米松保留为无活性的磷酸盐前体药物形式,这可能会显著限制全身对活性母体药物的暴露。因此,尽管这项小规模首次人体试验存在局限性,但 Dex-PL 似乎是安全且耐受性良好的,没有严重的副作用。需要进行后续研究以在更大的患者群体中证实这一点,并评估静脉注射 Dex-PL 是否可以为 MM 提供更安全、更有效的地塞米松治疗选择。
刺激响应性聚合物网络(如微凝胶和水凝胶)具有多种特性,需要分析其合理设计和成功应用于目标领域。纳米级表征可以通过高度选择性和敏感的技术(包括高分辨率NMR光谱,弛豫测定法和降解量)来实现。本综述着重于使用1小时和13 C 1D和2D NMR技术的最新结果,这些技术提供了有关聚合物网络的化学现场选择信息,从而揭示了纳米级级别的聚合物网络的结构与动力学之间的相互作用。,NMR可以允许获取有关i)内部结构的信息。如果重要的聚合物网络性能可以与交联密度,交联相互作用的类型,电荷电荷,水生电纳米构建和分配浓度相关联,则可以制作响应式微凝胶和水凝胶的合理设计,并在药物输送,细胞载体系统,催化器,执行器和作为抗菌剂中的合理设计。
纤维化是对重要器官慢性重复性损伤的常见反应,被认为是减缓、抑制或逆转器官衰竭进展的重要治疗目标。尽管人们对开发新型抗纤维化疗法有着广泛的兴趣,但目前只有尼达尼布和吡非尼酮被批准用于治疗一种疾病的纤维化:特发性肺纤维化。2 这两种药物都会干扰促纤维化生长因子的信号传导。目前正在研究各种其他抗纤维化方法。这些包括干扰参与纤维化的不同细胞因子的小分子或抗体、抗衰老药物、针对代谢变化和巨噬细胞-成纤维细胞串扰的药物以及针对活性成纤维细胞的嵌合抗原受体 T 细胞 (CAR-T) 疗法。2 但是,这些方法都没有将抗纤维化疗法带入临床,仍然迫切需要新型疗法。最近的方法源自针对表观遗传信号蛋白的靶向抑制,这些蛋白属于溴结构域和额外末端结构域 (BET) 家族,在心脏病的临床前研究中已显示出良好的效果。3 在心力衰竭模型中,BET 抑制可抑制炎症和纤维化。去年,BETonMACE 是首个研究 BET 抑制剂对近期急性冠状动脉综合征和 2 型糖尿病患者的临床试验,未能显示 BET 抑制对心血管死亡、非致命性心肌梗死或中风等主要结果有益。3
金属氯化物配合物在温和条件下与Tris(三甲基甲硅烷基)磷酸反应,以产生金属磷化物(TMP)纳米颗粒(NPS),而氯甲基甲硅烷则作为副产物。与起始M-CL键更强的Si-Cl键的形成是反应的驱动力。通过使用[RUCL 2(Cymene)]和Tris(Trimet-hylsilyl)磷酸在35°C中制备该策略的潜力。将小(1.3 nm的直径为1.3 nm)和无定形NP形成,其整体RU 50 P 50组成。有趣的是,这些NP可以很容易地固定在功能支持材料上,这对于在催化和电催化中的潜在应用引起了极大的兴趣。mo 50 P 50和CO 50 P 50 NP也可以按照相同的策略合成。这种方法简单且通用,并为在轻度反应条件下制备广泛的过渡金属磷化物纳米颗粒的方式铺平了道路。
应变促进炔烃-叠氮化物环加成 (SPAAC) 已成为生物正交结合和表面固定中不可或缺的工具。虽然许多研究都集中于增强环辛炔的反应性,但是仍然缺少一种无需任何复杂设施即可评估环辛炔-叠氮化物固定化结合效率的简便方法。在本研究中,与荧光团或生物素部分连接的二苯并环辛炔/双环壬炔 (DBCO/BCN) 的不同衍生物被图案化在超低污染聚合物刷上,这可以在不进行任何先前的封闭步骤的情况下避免非特异性蛋白质污染。聚合物刷由防污底部嵌段和叠氮化物封端的顶部嵌段组成。使用普通荧光显微镜对通过微通道悬臂点样 ( μ CS) 点样的有序阵列进行结合效率的评估。两种环辛炔均通过 μ CS 与含叠氮化物的二嵌段聚合物刷表现出可靠的结合性能,但根据蛋白质结合试验,DBCO 显示出更高的分子固定表面密度。这项工作为选择合适的环辛炔与叠氮化物偶联提供了参考,并可用于设计用于分析物检测、细胞捕获和其他生物应用的生物传感器或生物平台。
氨(NH 3)是向无碳能源系统转变的关键参与者。可靠的化学动力学模型对于基于NH 3的燃烧技术的进步至关重要。尽管存在相当多的单个模型,但它们的验证发生在不同的情况下,并且最常见于有限的条件集,主要基于与实验数据的图形比较。这项研究对纯NH 3和NH 3 /H 2混合物的广泛实验数据库进行了16个最新模型的全面定量评估。这种定量评估的基础是在平滑插值实验和相应的预测曲线之间计算出的相似性评分。评估利用了文献中可用的广泛实验数据集,并根据不同的目标数量进行分类,包括物种浓度,点火延迟时间和层流燃烧速度。根据热解,高温,中等和低温氧化以及热DENO X过程,将物种浓度评估进一步分类。全面的评估揭示了模型的性能之间的显着差异,有些模型比其他模型表现出更好的一致性。均未在所有条件下达成令人满意的一致性,强调了进一步改进的必要性。模型性能在不同的类别下进行了审查,以检查关键动力学参数,并提供了潜在改进的见解。在更广泛的背景下,整合全面的NH 3 /H 2模型需要从各种动力学建模,实验和理论计算研究中融合见解。这项工作是朝这个方向朝着这一方向发展的基础步骤,这有助于不断努力地完善对NH 3燃烧的理解。
Tesla在2020年引入了锂离子电池电池的表电极设计,其成功的工业化为2022型Y的工业化标志着电池圆柱电池设计领域的显着突破。这种创新的方法允许使用更大的细胞设计,同时通过在系统级别上进行主动冷却来保持最佳的每种形式的最佳热热。虽然先前的研究专注于这种表丝设计在热管理方面的优势,但这项工作探讨了电极制造过程中的明显好处。传统上,圆柱电池电池利用一种电极涂料方法,该方法在电极表面上留下了间隙以容纳焊接焊接。因此,涂料机以间歇性涂料模式运行,从而大大降低了可实现的涂料速度。相比之下,表电极设计可以通过涂料机对活性材料的连续沉积。这一进步导致涂料速度显着提高,超过60%,这比与激光相关的额外成本削减了削减表丝电极的边缘的额外成本。本文展示了制造过程中的表电极的采用如何导致成本降低,从2.029到1.698€ /kWh,同时保持所有其他因素恒定。尽管这种降低的成本可能显得很少,但对于总细胞成本而言,千千量表的累积节省变得很重要,这使得这一进步在经济上可行且有影响力。
我们以独立的方式审查并扩展了基于使用随机状态的数值模拟方法的数学基础。通过计算物理相关的特性,例如大型单个粒子系统的密度,特定的热量,电流 - 电流相关性,密度 - 密度相关性和电子自旋谐振光谱。我们通过证明它可用于分析旨在在嘈杂的中间尺度量子处理器上实现量子至上的数值模拟和实验来探索随机状态技术的新应用。此外,我们表明随机技术的概念在量子信息理论中被证明是有用的。
这张简短的通信纸提供了我们2019年原始电池存储纸的最新信息[1]。它包含有关家庭存储系统市场(HSS),工业存储系统(ISS)和大规模存储系统(LSS)的详细信息。HSS市场在过去几年中一直持续增长。我们估计,2019年安装了60,000个新的HSS,总电池电量约为250兆瓦,存储容量为490 MWH。这总计总计185,000 HSS,到2019年底的储存能力约为750兆瓦,存储容量为1,420 MWH。近年来,锂离子HSS的特定价格下跌了50%以上。从2018年到2019年,中型HSS的价格在5 kWh至10 kWh之间的价格下降了6%,至1,100欧元 /千瓦时。德国联邦网络机构“ MASTR”的新数据库已经显示了90,000多个HSS注册,到2020年5月1日,总共已经增长,并且正在不断增长。它还对ISS市场产生了一些见解,到目前为止,这主要是未知的。已经注册了大约700 ISS,其存储能力大于30 kWh。注册的ISS加起来累积的功率约为27兆瓦,到2019年底的存储容量超过57 MWH。但是,ISS数据库的当前状态仍然不允许对德国ISS总体市场进行全面估计。关于LSS市场,2019年,只有9个新的LSS项目以54兆瓦的电池电量为54兆瓦,存储容量为62 MWH,这表明市场增长幅度强劲下降。新的安装总计总计68 LSS,累积功率为460 MW,容量约为620 MWH。这些主要在频率遏制储备(FCR)市场中运行。FCR价格近年来一直在降至2019年不到1,500€/mw/周。在2020年初,价格下降到约1,000欧元 /周 /周,这使得市场越来越吸引新参与者。此外,德国联邦网络机构确认了三个试点项目,其中包括100 MW/100 MWH(两个项目)和250 MW/250 MWH(一个项目)的大规模所谓的“网格助推器”(一个项目)预计将于2022年开始运行。这些系统将大大提高LSS市场。就存储技术而言,锂离子电池在所有BSS市场中仍然是领先的技术。