超声引导下局部麻醉教育和培训建议。区域麻醉和疼痛医学 2009;34:40 – 6。4.Turbitt LR、Mariano ER、El-Boghdadly K。区域麻醉的未来方向:不只是行家。麻醉 2020;75:293 – 7。5.Bowness J、Turnbull K、Taylor A 等。在超声引导下局部麻醉过程中识别变异解剖结构:临床改进的机会。英国麻醉学杂志 2019; 122 : 775 – 7。6。Drew T、Vo MLH、Wolfe JM。隐形大猩猩再次来袭:专家观察员的持续注意力不集中。心理科学 2013;24:1848 – 53。7。Connor CW。麻醉学中的人工智能和机器学习。麻醉学 2019;131:1346 – 59。8。James Lind Alliance。麻醉和术前护理前 10 名。http://www.jla.nihr.ac.uk/priority-setting-partnerships/anaesthesia- and-perioperative-care/top-10-priorities/(2019 年 11 月 15 日访问)。9.C ^ ot e CD,Kim PJ。麻醉学中的人工智能:走向未来。多伦多大学医学杂志 2019;96:33 – 6。10.Karpagavalli S、Jamuna KS、Vijaya MS。机器学习方法用于术前麻醉风险预测。国际工程与技术最新趋势杂志 2009;1:19 – 22。11。Oh TT、Ikhsan M、Tan KK 等人。一种新的神经轴麻醉方法:应用自动超声脊柱标志识别。BMC 麻醉学 2019;19:57。12。Wijnberge M、Geerts BF、Hol L 等人。机器学习衍生的术中低血压预警系统与标准护理对选择性非心脏手术期间术中低血压深度和持续时间的影响。美国医学会杂志 2020; 323 : 1052 – 60。13。Sippl P、Ganslandt T、Prokosch HU 等。全身麻醉期间插管后缺氧的机器学习模型。健康技术与信息学研究 2017;243:212 – 6。14。Lee CK、Ryu HG、Chung EJ 等。丙泊酚和瑞芬太尼靶控输注期间双谱指数的预测:一种深度学习方法。麻醉学 2018;128:492 – 501。
众所周知,核能有可能通过《巴黎协定》中建立的截止日期来实现气候目标发挥重要作用。随着能源混合物中可再生能源的一部分的增长,核电站的柔性运行越来越被视为一种有效的措施,以补偿由于天气变化而导致的可再生能源产生波动。核电厂的柔性运行通常涉及功率变化,并且通过强球 - 映射相互作用(PCI)对燃油覆盖的高压力可能会导致腐蚀性环境中的覆层失败(即PCI - 压力腐蚀破裂或PCI – SCC)。为了解决这一问题,并根据成员国的要求,IAEA于2019年10月8日至11日在法国Aix-en-Provence举行了一次技术会议,以分享有关高级实验,建模,燃料设计方法和操作指南的信息,以实现核发电厂的灵活运营。这次会议是一系列有关PCI – SCC现象的国际专业会议和技术会议的一部分,以及运行后的权力升级,骑自行车和负载的影响。会议旨在促进有关预防或减轻PCI -SCC问题的信息的交换。在这些会议的结论中,PCI – SCC需要与反应堆系统的操作和燃料操纵条件下的燃料行为进行处理,并且需要更好地了解PCI – SCC的某些基本现象。为了实现更经济和灵活的操作条件,需要持续的实验和分析工作。本出版物对PCI – SCC研究的进展进行了综述。反应堆核心设计和操作中实施PCI – SCC的实施,PCI – SCC机制的实验研究,PCI – SCC建模的改进以及自2000年代初以来PCI – SCC设计方法的优化,基于在介绍的论文和讨论中,在2000年代初期进行了讨论。IAEA感谢会议参与者的积极参与和演讲,以及技术委员会的成员,尤其是V.I.Arimescu(美利坚合众国),T。Forgeron(法国),W.-S.。 Ryu(大韩民国),N。Waeckel(法国)和J. Zhang(比利时),在组织技术会议和起草该出版物方面做出了宝贵的贡献。特别感谢CEA CADARACHE主持技术会议和Federici E. Federici(法国)的本地会议协调,并彻底审查了介绍的论文。负责此出版物的IAEA官员是核燃料循环和废物技术部的K. SIM。
局域性无疑是量子理论和广义相对论不可分割的一部分。另一方面,像 AdS/CFT 这样的全息理论意味着,在边界理论中,体量子引力自由度被编码在空间无穷远处。尽管这种说法是在非微扰层面上的说法,但在量子引力的微扰极限中,这种性质仍然存在。这主要是由于引力高斯定律,它使我们无法定义严格的局部算子。由于在描述中包含引力要求理论在坐标变换下不变,因此物理算子需要是微分同胚不变的。高斯定律实现的这一条件要求算子被修饰到边界,并包含一个延伸到无穷远处的引力版本的威尔逊线,因此要求它们是非局部的。为了解决这一矛盾,我们提出了候选算子,它们可以绕过这一要求,同时在 AdS/CFT 环境中具有局部和微分同胚不变性。这些算子仍然满足引力高斯定律的一个版本,因为它们被解释为相对于状态的特征进行修饰。因此,这些算子所定义的状态是破坏理论对称性并具有“特征”的状态。这些状态通常是具有大方差的高能状态,对应于块体中非平凡的半经典几何。该提议还将有助于解决有关岛屿提议的悖论。此外,这使得人们能够在微扰量子引力中更具体地讨论子区域、其相关子系统和信息局部化。在第二部分中,我们将主要关注称为 AdS-Rindler 楔形的块体子区域。我们将使用从量子信息和量子计算界借用而来的 Petz 映射,从其边界对偶子区域明确地重建该体子区域。这与先前关于体子区域重建的猜想以及由于引力的量子误差校正性质,Petz 映射可用于重建纠缠楔的提议相一致。此外,我们精确研究了 AdS Rindler 楔中的算子代数,包括体和边界对偶。使用交叉积构造和一种新的重正化 Ryu Takayanagi 表面的方法,我们展示了如何通过包括引力校正将代数修改为更易于管理的代数,我们可以在其中定义密度矩阵和冯诺依曼熵。最后,在存在引力相互作用的情况下,我们研究了一般背景下算子代数的一种特殊表示,称为协变表示。这种表示将从物理角度阐明交叉乘积构造的含义。
Bascompte,J.,García,M。B.,Ortega,R.,Rezende,E.L。,&Pironon,S。(2019)。相互互动改造气候变化对整个生命树的植物的影响。科学进步,5,EAAV2539。Bond,W。J.(1994)。互助主义重要吗?评估策略和分散器破坏对植物灭绝的影响。伦敦皇家学会的哲学交易。系列B:生物科学,344,83–90。 Botha,P。W.(2017)。 没有鸟类的世界:对构粉鸟类对植物群落的生态意义的实验检验(博士学位论文)。 Stellenbosch大学。 Cahill,A。E.,Aiello-Lammens,M。E.,Fisher-Reid,M.C.,Hua,X.,Karanewsky,C.J.,Ryu,H。Y. B.,Warsi,O。,&Wiens,J。J. (2013)。 气候变化如何导致灭绝? 皇家学会会议录B:生物科学,280,20121890。 克拉克,A。 (1996)。 气候变化对生物体分布和演变的影响。 在I. 中 A. Johnston和A. F. Bennett(编辑。 ),动物和温度:表型和进化适应(卷 59,pp。 375–407)。 剑桥大学出版社。 A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。 模型平均生态学:贝叶斯,信息理论和战术方法的回顾。 生态专着,88,485–504。 Geerts,S。(2011)。系列B:生物科学,344,83–90。Botha,P。W.(2017)。 没有鸟类的世界:对构粉鸟类对植物群落的生态意义的实验检验(博士学位论文)。 Stellenbosch大学。 Cahill,A。E.,Aiello-Lammens,M。E.,Fisher-Reid,M.C.,Hua,X.,Karanewsky,C.J.,Ryu,H。Y. B.,Warsi,O。,&Wiens,J。J. (2013)。 气候变化如何导致灭绝? 皇家学会会议录B:生物科学,280,20121890。 克拉克,A。 (1996)。 气候变化对生物体分布和演变的影响。 在I. 中 A. Johnston和A. F. Bennett(编辑。 ),动物和温度:表型和进化适应(卷 59,pp。 375–407)。 剑桥大学出版社。 A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。 模型平均生态学:贝叶斯,信息理论和战术方法的回顾。 生态专着,88,485–504。 Geerts,S。(2011)。Botha,P。W.(2017)。没有鸟类的世界:对构粉鸟类对植物群落的生态意义的实验检验(博士学位论文)。Stellenbosch大学。Cahill,A。E.,Aiello-Lammens,M。E.,Fisher-Reid,M.C.,Hua,X.,Karanewsky,C.J.,Ryu,H。Y.B.,Warsi,O。,&Wiens,J。J.(2013)。气候变化如何导致灭绝?皇家学会会议录B:生物科学,280,20121890。克拉克,A。(1996)。气候变化对生物体分布和演变的影响。在I.A. Johnston和A. F. Bennett(编辑。 ),动物和温度:表型和进化适应(卷 59,pp。 375–407)。 剑桥大学出版社。 A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。 模型平均生态学:贝叶斯,信息理论和战术方法的回顾。 生态专着,88,485–504。 Geerts,S。(2011)。A. Johnston和A. F. Bennett(编辑。),动物和温度:表型和进化适应(卷59,pp。375–407)。剑桥大学出版社。A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。 模型平均生态学:贝叶斯,信息理论和战术方法的回顾。 生态专着,88,485–504。 Geerts,S。(2011)。A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。模型平均生态学:贝叶斯,信息理论和战术方法的回顾。生态专着,88,485–504。Geerts,S。(2011)。Dormann,C.,Calabrese,J.,Guillera-Arroita,G.,Matechou,E. B.Dormann,C。F.,Elith,J.,Bacher,S.,Buchmann,C.,Carl,G.,Carré,G.,Marquéz,J.,Gruber,B.,Lafourcade,B.,Leitão,Leitão,p。 J.(2013)。colnearity:对处理IT的方法和评估其性能的模拟研究的综述。coporivy,36,27–4J.,Graham,C.H.,Anderson,R.P.,Dudík,M.,Ferrier,S.,Guisan,A.,Hijmans,R.J.,Huettemann,F.,Leathwick,J.R. a。,Maninon,G.,Moritz,C.,Caure,M.,Cazawa,Yawa,YA,Overton,J.M. S.和Zimmermann,N。E.(2006)。 新颖的方法改善了从动力数据中对物种分布的预测。 生态学,29,129–1 Freeman,B。G.,Scher,M。N.,Ruiz-Gutierrez,V。和Fitzparick,J。W.(2018)。 气候变化会导致热带鸟类社区的上坡变化和山顶。 国家科学院会议录,115,11982–1 <非洲开普敦的鸟类授粉粉的分散和分散(博士学位论文)。 Stellenbosch大学。 Geerts,S。和Adedoja,O。 (2021)。 生物入侵,23,2961–2 (2020)。 (2012)。J.,Graham,C.H.,Anderson,R.P.,Dudík,M.,Ferrier,S.,Guisan,A.,Hijmans,R.J.,Huettemann,F.,Leathwick,J.R.a。,Maninon,G.,Moritz,C.,Caure,M.,Cazawa,Yawa,YA,Overton,J.M. S.和Zimmermann,N。E.(2006)。新颖的方法改善了从动力数据中对物种分布的预测。生态学,29,129–1Freeman,B。G.,Scher,M。N.,Ruiz-Gutierrez,V。和Fitzparick,J。W.(2018)。气候变化会导致热带鸟类社区的上坡变化和山顶。国家科学院会议录,115,11982–1<非洲开普敦的鸟类授粉粉的分散和分散(博士学位论文)。Stellenbosch大学。Geerts,S。和Adedoja,O。(2021)。生物入侵,23,2961–2(2020)。(2012)。授粉和繁殖增强了早期入侵者的侵入性潜力:南非的Lythrum sali-Caria(紫色散落)案例。Geerts,S.,Coetzee,A.,Rebelo,A。G.,&Pauw,A。授粉结构植物和南非角的植物和喂养鸟类群落:对保护植物 - 鸟类共同主义的影响。生态学研究,35,838–856。Geerts,S.,Malherbe,S。D.,&Pauw,A。南非角植物植物中的火花鸟类减少了花蜜喂养鸟类的鲜花。鸟类学杂志,153,297–301。Geerts,S。,&Pauw,A。(2009)。非洲阳光悬停以授粉的蜂鸟 - 授粉植物。Oikos,118,573–579。 Gérard,M.,Vanderplanck,M.,Wood,T。和Michez,D。(2020)。 全球变暖和植物 - 授粉不匹配。 生命科学的新兴主题,第4、77-86页。 Gómez-Ruiz,E。P.和Lacher,T。E.,Jr。(2019)。 气候变化,范围移动以及传粉媒介植物复合物的破坏。 科学报告,9,1-10。Oikos,118,573–579。Gérard,M.,Vanderplanck,M.,Wood,T。和Michez,D。(2020)。 全球变暖和植物 - 授粉不匹配。 生命科学的新兴主题,第4、77-86页。 Gómez-Ruiz,E。P.和Lacher,T。E.,Jr。(2019)。 气候变化,范围移动以及传粉媒介植物复合物的破坏。 科学报告,9,1-10。Gérard,M.,Vanderplanck,M.,Wood,T。和Michez,D。(2020)。全球变暖和植物 - 授粉不匹配。生命科学的新兴主题,第4、77-86页。Gómez-Ruiz,E。P.和Lacher,T。E.,Jr。(2019)。 气候变化,范围移动以及传粉媒介植物复合物的破坏。 科学报告,9,1-10。Gómez-Ruiz,E。P.和Lacher,T。E.,Jr。(2019)。气候变化,范围移动以及传粉媒介植物复合物的破坏。科学报告,9,1-10。
在这篇评论中,我们讨论了黑洞信息悖论方面的一些最新进展。在深入研究之前,让我们先讨论一下总体动机。研究量子引力的主要动机之一是了解宇宙的最初时刻,我们预计量子效应占主导地位。在寻找这一理论时,最好考虑更简单的问题。一个更简单的问题涉及黑洞。它们的内部也包含一个奇点。这是一个各向异性的大挤压奇点,但这也是量子引力必不可少的情况,因此很难分析。然而,黑洞为我们提供了从外部研究它们的机会。这更简单,因为远离黑洞我们可以忽略引力的影响,我们可以想象提出尖锐的问题,从远处探测黑洞。这些问题之一将成为这篇评论的主题。我们希望,通过研究这些问题,我们最终能够理解黑洞奇点,并为大爆炸吸取一些教训,但我们不会在这里这样做。70 年代对黑洞的研究表明,黑洞表现为热物体。它们的温度会导致霍金辐射。它们还具有由视界面积决定的熵。这表明,从外部的角度来看,它们可以被视为一个普通的量子系统。霍金通过我们现在所知的“霍金信息悖论”反对这一想法。他认为黑洞会破坏量子信息,而宇宙的冯·诺依曼熵会因黑洞形成和蒸发的过程而增加。90 年代使用弦理论(一种量子引力理论)的结果为研究非常具体的引力理论的这一问题提供了一些精确的方法。这些结果强烈表明信息确实会出现。然而,目前的理解需要量子系统具有某些对偶性,而时空的几何形状并不明显。在过去的 15 年中,人们对引力系统的冯·诺依曼熵有了更好的理解。熵的计算也涉及表面面积,但表面不是视界。它是一个使广义熵最小化的曲面。这个公式几乎和黑洞熵的贝肯斯坦公式一样简单 [1,2]。最近,该公式被应用于黑洞信息问题,提供了一种计算霍金辐射熵的新方法 [3,4]。最终结果与霍金的结果不同,但与幺正演化一致。细粒度熵公式的第一个版本由 Ryu 和 Takayanagi [5] 发现。随后,许多作者对其进行了改进和推广 [3,4,6–11]。最初,Ryu-Takayanagi公式被提出来计算反德西特时空中的全息纠缠熵,但目前对这个公式的理解更为普遍。它既不需要全息术,也不需要纠缠,也不需要反德西特时空。相反,它是与引力耦合的量子系统的细粒度熵的通用公式。
5月9日:谢谢您的成员,Phil Uyehara和Giselle Miyashiro邀请您的个人健身教练Kaizen F.I.T.N.E.S.S.的Jedd Ramos花时间并教我们的会员。根据杰德(Jedd)的说法,健康且适合健康永远不会太晚,可以在1街之前长寿,保持活跃,做家务,院子工作和其他活动。2和您吃的食物应该是基本的,而不是垃圾食品。3 rd,您需要像我们的ONC Group这样的有意义的关系,以便彼此在一起并共同做朋友。在做任何事情之前要做的第一件事就是通过鼻子呼吸,这非常重要。80%的人通过他们的嘴呼吸,这是未经过滤的,您最终会咳嗽,冷,倾向于睡觉时打sn。通过鼻子呼吸,使过滤湿润的空气湿润。重要的是要通过鼻子呼吸,握住它,然后再呼吸,然后正常呼吸。移动性很重要!您首先需要温暖身体,这样您就不会受伤。要保持坚固且稳定,您需要建立核心,这是从大腿中部到上胸部区域的。杰德教会了我们从手指到脚趾的许多伸展。我们在这些练习过程中做了适当的呼吸。正确的呼吸愉快并学习以在我们的核心中增强力量。5月16日:母亲节庆祝活动与Tamagusuku Ryu Senju Kai&Frances Nakachi Senseis舞蹈学院,该学院的遗产范围超过27年。目前她的学生年轻3-83岁。这是一个很棒的感人节目。,让Nakachi Sensei和她的学生们以其美丽的服装,传统和民间舞蹈为我们娱乐我们总是很不错的时机。他们结束了他们的出色计划,成员做“ kachashi”,然后在母亲节中向所有人分发小吃。5月23日:阵亡将士纪念日庆祝活动,以记住我们去年去年去世的所有LMPSC成员。家人,朋友和成员聚集在一起以纪念他们的亲人和特殊死者。被称为死者的名字,为了纪念亲人而将家人和朋友放在正面的花瓶中。每个文化俱乐部主席或代表也向他们的尊敬表示敬意,并由这位白人妈妈的演讲,其次是所有其他在那里的成员。成员的精美花卉布置为房间增光添彩。umaribi-kariyushi yaibii-n(生日快乐)至:蒙娜·贝纳多,埃尔米纳·伊玛村,Yoshiko kumura,Teresa Sasaki,Teresa Sasaki,Mildred Suzuki,Frank Toma,Yoneko Tsuchiyama tsuchiyama&Jeanette Yamane and Yamane Yamane Yamane Yamane Yamane
个人简历 (CV) Grace X. Gu 博士 助理教授 加州大学伯克利分校 机械工程系 电子邮件:ggu@berkeley.edu (a) 专业任命 2018 年至今:加州大学伯克利分校机械工程助理教授 (b) 教育背景 密歇根大学,密歇根州安娜堡;机械工程;理学学士,2012 年 麻省理工学院,马萨诸塞州剑桥;机械工程;硕士,2014 年 麻省理工学院,马萨诸塞州剑桥;机械工程;博士,2018 年 (c) 精选出版物 40. Z Zhang、JH Lee 和 GX Gu。具有定制电动力耦合的压电超材料的合理设计,极端力学快报,2022 年 39. V Shah、S Zadourian、C Yang、Z Zhang 和 GX Gu。用于预测碳纤维增强复合材料力学性能的数据驱动方法,材料进展,2022 38. Z Zhang、Z Jin 和 GX Gu。使用混合物理和数据驱动框架的高效气动驱动建模,Cell Reports Physical Science,2022 37. S Lee、Z Zhang 和 GX Gu。用于具有优异力学性能的晶格结构的生成机器学习算法,材料视野,2022 36. Z Zhang、Z Zhang、F Di Caprio 和 GX Gu。用于加速双层复合结构设计过程的机器学习,复合结构,2022 35. K Brown 和 GX Gu。智能增材制造的维度,先进智能系统,2021 34. B Zheng、Z Zheng 和 GX Gu。通过高斯过程元模型对石墨烯气凝胶力学性能的不确定性量化和预测,Nano Futures,2021 33. YT Kim、YS Kim、C Yang、GX Gu 和 S Ryu。使用主动迁移学习和数据增强的材料设计空间探索深度学习框架,npj 计算材料,2021 32. F Sui、R Guo、Z Zhang、GX Gu 和 L Lin。用于数字材料设计的深度强化学习,ACS Materials Letters,2021 31. CT Chen 和 GX Gu。使用深度神经网络学习隐藏弹性,美国国家科学院院刊,2021 30. AY Chen、A Chen、J Wright、A Fitzhugh、A Hartman、J Zeng 和 GX Gu。构建参数对多喷射熔合生产的聚合物材料机械行为的影响,先进工程材料,2021 29. K Demir、Z Zhang、A Ben-Artzy、P Hosemann 和 GX Gu。使用神经网络进行金属增材制造缺陷预测的激光扫描策略描述符。制造工艺杂志,2021
会议 1:SID 年度业务会议 2024 年 5 月 14 日星期二 / 上午 8:00 – 8:20 / 220A 房间 会议 2:开幕致辞/主旨演讲 2024 年 5 月 14 日星期二 / 上午 8:20 – 10:20 / 220A 房间 主席:Hyun-Jae Kim,延世大学 2.1:主旨演讲 1:量子点中的量子魔力:合成开启纳米探索之旅 Moungi Bawendi,麻省理工学院教授 2.2:主旨演讲 2:新现实:AR 和 MR 中显示的机遇和挑战 Jason Hartlove,Meta 显示和光学副总裁 2.3:主旨演讲 3:超越像素,创新显示引领未来 TCL 首席执行官赵军 会议 3:AR 光合路器 (AR/VR/MR) 2024 年 5 月 14 日星期二 / 上午 8:20 – 10:20 2024 年 11 月 14 日 / 上午 11:10 - 下午 12:50 / 房间 220B 主席:Robert Visser 博士,应用材料公司 联合主席:Michael Wittek,默克公司 3.1:特邀论文:衍射波导组合器中的现实与模拟 Guillaume Genoud,Dispelix Oy,芬兰埃斯波 3.2:特邀论文:AR 光学的当前技术和发展 Jee Myung Kim,LetinAR,韩国安养 3.3:变形-XR:用于高效、宽视场近眼显示的成像波导技术 Graham Woodgate,Rain Technology Research Ltd.,英国牛津 3.4:具有曲面波导的时尚外形近眼显示器 Jaeyeol Ryu,三星研究中心,韩国首尔 3.5:杰出论文:用于 AR 显示的全彩色、宽视场单层波导 Qian杨,中佛罗里达大学,美国佛罗里达州奥兰多 第四场:量子点诺贝尔奖(发射、微型 LED 和量子点显示器) 2024 年 5 月 14 日星期二/上午 11:10 - 下午 12:10/220C 室 主席:意法半导体 Jonathan Steckel 博士 联合主席:NS Nanotech 的 Seth Coe-Sullivan 4.1:特邀论文:利用胶体纳米晶体合成和自组装来创建模块化光学和光电材料和设备 Chris Murray,宾夕法尼亚大学,美国宾夕法尼亚州费城 4.2:特邀论文:量子点:更亮?苏黎世联邦理工学院,瑞士苏黎世 4.3:特邀论文:QD-LED 发展概况:现状及未来前景 Yeo-Geon Yoon,三星显示有限公司,韩国龙仁 第 5 场:集成 EMR 手写笔显示器(交互式显示器和系统/传感器集成和多功能显示器) 2024 年 5 月 14 日星期二/上午 11:10 - 下午 12:10/房间 LL21CD 主席:Hiroshi Haga,天马日本有限公司 联合主席:Derek Solven,Synaptics 5.1:阵列基板中集成天线线圈的 Incell 电磁共振触摸 LCD Chuan Shuai,TCL 华星光电科技股份有限公司,中国武汉 5.2:柔性 OLED 显示屏的电容式触摸和电磁传感器集成设计 Lihua Wang,合肥维信诺科技有限公司,中国合肥
Huang-Pollock, CL、Maddox, WT 和 Karalunas, SL (2011)。内隐和外显类别学习的发展。《实验儿童心理学杂志》,109,321–335。 Kalbfleisch, ML (2004)。天赋的功能神经解剖学。《解剖记录》B 部分,277,21–36。 Kuhn, T.、Schonfeld, D.、Sayegh, P.、Arentoft, A.、Jones, JD、Hinkin, CH、Bookheimer, SY 和 Thames, AD (2017)。艾滋病毒和衰老对皮层下形状改变的影响:一项 3D 形态学研究。《人脑映射》,38(2),1025–1037。 Kyllonen, PC 和 Christal, RE (1990)。推理能力(仅仅)是工作记忆能力?智力,14,389–433。Laugeson, EA、Frankel, F.、Gantman, A.、Dillon, AR 和 Mogil, C. (2012)。针对患有自闭症谱系障碍的青少年的循证社交技能培训:UCLA PEERS 计划。自闭症和发育障碍杂志,42 (6),1025–1036。Mills, CJ 和 Tissot, SL (1995)。识别来自弱势群体学生的学术潜力:使用瑞文斯渐进矩阵是个好主意吗?天才儿童季刊,39,209–217。 Na, HS, Hong, SJ, Yoon, HJ, Maeng, JH, Ko, BM, Jung, IS, Ryu, CB, Kim, JO, Cho, JY, Lee, JS, Lee, MS, Shim, CS, & Kim, BS (2007)。幽门螺杆菌感染一线和二线治疗的根除率以及成功根除后的再感染率。韩国胃肠病学杂志,50,170-175。Navas-Sánchez, FJ, Alemán-Gómez, Y., Sánchez-Gonzalez, J., Guzmán-De-Villoria, JA, Franco, C., Robles, O., Arango, C., & Desco, M. (2014)。白质微结构与数学天赋和智商的关系。人脑映射,35(6),2619-2631。Neihart, M.、Reis, SM、Robinson, N. 和 Moon, S. (2002)。天才儿童的社交和情感发展:我们知道什么?Sourcebooks, Inc.O'Boyle,MW(2008)。数学天才儿童:大脑发育特征及其幸福感预后。Roeper Review,30(3),181-186。O'Boyle, MW、Alexander, JE 和 Benbow, CP (1991)。数学早熟儿童右半球活动增强:初步脑电图调查。脑与认知,17,138-153。O'Boyle, MW 和 Benbow, CP (1990)。认知处理过程中右半球参与度的提高可能与智力早熟有关。《神经心理学》,28,211-216。O'Boyle, MW、Benbow, CP 和 Alexander, JE (1995)。智力超常者的性别差异、半球侧化和相关大脑活动。《发育神经心理学》,11 (4),415-443。O'Boyle, MW、Cunnington, R.、Silk, TJ、Vaughan, D.、Jackson, G.、Syngeniotis, A. 和 Egan, GF (2005)。数学天才的男性青少年在心理旋转过程中激活独特的大脑网络。《认知脑研究》,25 (2),583-587。Packard, MG 和 Knowlton, BJ (2002)。基底神经节的学习和记忆功能。《神经科学年度评论》,25,563–593。