宿主粘膜屏障拥有一系列防御分子,以维持宿主-微生物体内平衡,例如抗菌肽和免疫球蛋白。除了这些已证实的防御分子外,我们最近还报道了人类口腔角质形成细胞与具核梭杆菌 (Fn) 之间的小 RNA (sRNA) 介导的相互作用,Fn 是一种口腔致病菌,在口腔外疾病中的影响越来越大。具体而言,在 Fn 感染后,口腔角质形成细胞会释放 Fn 靶向 tRNA 衍生的 sRNA (tsRNA),这是一类具有基因调控功能的新兴非编码 sRNA。为了探索 tsRNA 的潜在抗菌活性,我们对 Fn 靶向 tsRNA 的核苷酸进行了化学修饰,并证明所得的 tsRNA 衍生物(称为 MOD-tsRNA)在纳摩尔浓度范围内无需任何运载工具即可对各种 Fn 型菌株和临床肿瘤分离株表现出生长抑制作用。相反,相同的 MOD-tsRNA 不会抑制其他代表性口腔细菌。进一步的机制研究揭示了 MOD-tsRNA 在抑制 Fn 中的核糖体靶向功能。总之,我们的工作提供了一种通过共同选择宿主衍生的细胞外 tsRNA 来靶向致病菌的工程方法。
植物免疫中的RNA沉默:超越武器竞赛?Sara Lopez-Gomollon,David C Baulcombe *植物科学系,剑桥大学,唐宁街,剑桥CB2 CB2 CB2 3EA UK *通信D.C.B.:dcb40@cam.ac.uk摘要RNA沉默已被很好地确定为植物中的一种抗病毒系统,在该植物中,小(S)RNA指导防御靶标对病毒RNA或DNA中的靶标的Argonaute蛋白效应子。病毒编码的沉默抑制剂抵消了这种防御系统。本综述总结了有关抗病毒RNA沉默的最新发现,包括RNA通过plasmodesmata的运动以及植物如何区分自我与病毒RNA。我们还描述了新兴的图片,即除抗病毒防御外,RNA沉默在针对非病毒病原体的植物免疫力中发挥作用。通过囊泡和其他结构以及通过这些生物体编码的沉默抑制器的作用,RNA向感染的植物细胞向感染的植物细胞的反式运动介导了这种对一般免疫力的影响。也存在RNA沉默对一般免疫力的影响,因为宿主编码的SRNA,包括微(MI)RNA,调节植物先天免疫系统中的类似点状受体和防御信号通路。这些RNA沉默途径构成了一个过程网络,对植物的免疫状态具有正面和负面影响。引言植物中的RNA沉默首先被确定为转基因和病毒感染的转录后机制1,2。它是由病毒或转基因RNA触发的,关键的中间分子是双链(DS)或DICER的发夹RNA底物(植物中的DCL)。在某些系统中,DSRNA由作用于单个链分子的RNA依赖性RNA聚合酶(RDR)产生,而21-24NT RNA DCL衍生的片段通常称为小(S)RNA(Box 1)。这些片段的单链衍生物与Argonaute(AGO)蛋白形成核蛋白,它们通过Watson-Crick Base配对引导它们以靶向RNA。agos是核酸酶,在规范的RNA沉默中(图1A),靶RNA被裂解SRNA的相反位置10,尽管存在如下所述的变体机制。该系统在抗病毒防御中有效,因为特异性是由源自病毒基因组的SRNA赋予的。由于每个双链RNA的DICER裂解成多个SRNA(Box 1),它也具有扩增属性。此外,SRNA在细胞之间是可移动的,因此它们可以在感染前部或前方或前方的病毒RNA和Prime Agos之前移动或前进(图1B)。与其他防御系统一样,带有RNA沉默,并且与宿主病原体相互作用的“武器竞赛”概念一致,病毒编码了抑制器,这些抑制器抵消了RNA沉默3-5的防御作用(Box 2和图2)。包括蠕虫,昆虫和哺乳动物在内的动物在感染细胞中产生病毒SRNA 2,6,7,对病毒的保护很可能是RNA的保守而古老的作用
结果:我们的结果揭示了包括miRNA,PIRNA和TRNA在内的组中331个已知和441个新型SRNA的显着差异表达。值得注意的是,鉴定出SRNA表达模式的不同簇,特异性miRNA在HTLV-1和HTLV-2感染中显示出明显的上调或下调。基因本体分析表明,靶基因在转录调控和RNA结合过程中的显着参与,而KEGG途径分析突出了与癌症相关途径的富集以及Foxo,Ras和Mapk等信号级联的富集。网络分析确定关键miRNA,例如HSA-MIR-20B-5P和HSA-LET-7E-5P,是具有广泛相互作用的中央调节剂,这表明它们在HTLV感染的发病机理和免疫反应中的潜在作用。
我读了Shanfa Lu教授的信,标题为“揭开PGY-SRNA-6,BZL-SRNA-20和XKC-SRNA-H3的起源”(Lu,2024)。在这封信中,Lu对我们先前出版的手稿发表了评论(Li等,2019; Tang等,2023; Zhao等,2023),得出的结论是,PGY-SRNA-6,BZL-SRNA-20,和XKC-SRNA-H3不是源自t的Herbal srnas。mongolicum,s。barbata和p。Quelgaris,分别是分辨率。在他先前的字母中,标题为“草药SRNA真的很新颖的精密药物?”(LU,2023),得出了类似的结论,指出“ HJT-SRNA-M1 - HJT-SRNA-M8,八个SRNA被认为是从R派生的。crenulata,实际上是源自动物和/或人类的”。在我们的响应信中,我们指出,在执行外观之前有其他可能的推论,分析数据和讨论(Cao等,2023; Huang等,2023a; Huang等,2023b; 2023b; Li et al。Lu教授最近的字母中的新颖结论是:“ PGY-SRNA-6和BZL-SRNA-20的发现是从人工5ʹ适配器中得出的”(LU,2024年)。再次,还有其他可能的推论,例如存在
[00:00:00] Roberta Pesce:欢迎大家回来。今天我们最后一次讨论的是罕见神经免疫疾病诊断后的疫苗接种,我很高兴能与德克萨斯大学西南医学中心教授、横贯性脊髓炎和视神经脊髓炎项目主任、儿童健康中心儿科 CONQUER 项目主任、SRNA 董事会成员 Benjamin Greenberg 博士一起参加。麻省总医院和哈佛医学院副神经病学家 Michael Levy 博士和约翰霍普金斯大学医学院神经免疫学和神经感染性疾病科神经病学和病理学教授、约翰霍普金斯脊髓炎和脊髓病中心主任 Carlos Pardo 博士一起参加。您好,Greenberg 博士、Levy 博士和 Pardo 博士。欢迎您,接下来由您发言。
摘要:即使使用最先进的技术,例如基因编辑,现代植物繁殖仍然是一个耗时且昂贵的过程。因此,迫切需要开发植物特质操纵和植物保护的替代方法。RNA干扰(RNAi)是一种由天然存在的双链RNA(DSRNA)和小RNA(SRNA)介导的保守细胞机制,可以靶向mRNA用于破坏或减少转录的mRNA。在这里,我们回顾了基于RNAi的技术的潜力,称为喷雾诱导的基因沉默(SIGS),是在植物或病原体控制中操纵内源基因表达的繁殖的替代或辅助。SIGs可能在减少害虫或病原体影响的情况下特别有用,从而改善生物胁迫并提高作物的农艺性能。关键字:RNA干扰,小RNA,SIGS,DSRNAS
链球菌酶是一种酶,在某些心肌梗死(心脏病发作),肺栓塞和动脉血栓栓塞症的情况下,可以分解血凝块。由于各种心脏病的发病率增加,链霉菌酶的需求在全球范围内高。链球菌酶的主要来源是来自链球菌的各种菌株。链霉菌酶在天然菌株链球菌中的表达受到限制,这是由于SAGD抑制剂基因用于生产链霉菌酶,需要将其淘汰以增加表达。然而,FASX是A组中存在的一个小RNA(SRNA),它通过在SKA mRNA的5'端结合,负责链球菌酶(SKA)基因的转录后调节。s。episimilis是β-蛋白酶蛋白产生链球菌细菌(C组),其中含有FASX的直系同源物,并且本质地表达了临床上重要的溶栓链蛋糕激酶。是为了提高mRNA的稳定性并增加链霉菌酶的表达,而链霉菌酶抑制了SAGD。与野生型相比,我们使用CRISPR-CAS9成功地从SAGD基因中淘汰,并观察到突变株中链球菌表达的相对定量的13.58倍。我们还证明了使用CRISPR-CAS9在Equisimilis中的成功靶基因敲除,可以进一步用于过表达链霉菌酶用于治疗应用。
2020年7月29日收到; 2021年1月11日接受;于2021年2月4日出版:作者隶属关系:1个非编码RNA技术与健康中心,哥本哈根大学兽医和动物科学系,1871年,丹麦Frederiksberg,哥本哈根大学; 2荷兰荷兰癌症研究所的致癌基因组学司,荷兰阿姆斯特丹1066; 3哥本哈根大学生物学系计算和RNA生物学部分,丹麦哥本哈根1165;丹麦的Bagsværd4 Novozymes。*通信:Jan Gorodkin,Gorodkin@rth。DK关键字:B。uttilis;基因组注释;非编码和结构化RNA;操纵子。缩写:Asrna,反义RNA; CD,编码序列;去,基因本体论; GRNA,导向RNA; Ji,Jaccard索引; ncRNA,非编码RNA; SRNA,小RNA; TMRNA,转移Messenger RNA; TSS,转录开始站点; TTS,转录终止位点; TU,转录单元; UTR,未翻译区域。†目前地址:英国索尔福德大学科学,工程与环境学院。数据语句:文章或通过补充数据文件中提供了所有支持数据,代码和协议。本文的在线版本可以使用四个补充表和九个补充数据。000524©2021作者
梭菌属菌株用于生产各种增值产品,包括燃料和化学品。任何商业上可行的生产工艺的开发都需要菌株和发酵工艺开发策略的结合。梭菌属的菌株开发可以通过随机诱变和靶向基因改造方法实现。然而,由于缺乏有效的基因组和转录组工程工具,通过靶向基因改造方法对梭菌属的菌株进行改良具有挑战性。最近,已经开发出各种合成生物学工具来促进产溶剂梭菌的菌株工程。在这篇综述中,我们整合了产溶剂梭菌基因组和转录组工程工具箱开发的最新进展。在这里,我们回顾了采用移动 II 组内含子、pyrE 等位基因交换和 CRISPR/Cas9 的基因组工程工具及其在梭菌属菌株开发中的应用。接下来,在梭菌菌株工程的背景下,还讨论了转录组工程工具,例如非翻译区 (UTR) 工程和合成 sRNA 技术。应用任何这些讨论的技术都将促进梭菌的代谢工程,以开发具有所需功能属性的改良菌株。这可能导致开发出一种经济可行的丁醇生产工艺,提高滴度、产量和生产率。
摘要:虫害在全球农业生产中的主要限制因素之一。除了对农作物的直接作用外,一些植物昆虫是植物性疾病传播的有效载体。需要大量的常规杀虫剂才能在全球范围内确保粮食生产,并对经济和环境产生很大影响,尤其是当有益的昆虫还受到经常缺乏所需特殊特定院子的化学物质的影响时。RNA干扰(RNAi)是一种自然机制基因表达调控,并保护包括昆虫在内的大多数真核生物中存在的外源性和内源性遗传元件。双链RNA(DSRNA)或高度结构化RNA的分子是细胞酶的底物,可产生几种类型的小RNA(SRNA),在靶向转录或转录后基因沉积物的靶向序列中起着至关重要的作用。基于RNAi调节的基础的相对简单规则,主要基于Watson -Crick互补性,具有基于这些细胞机制的生物技术应用。这包括使用工程的DSRNA分子的承诺,即在农作物植物中生产的内源性或外源合成并应用于农作物上,作为新一代高度特定,可持续和环保杀虫剂的新一代。在这一期望下,本文回顾了有关昆虫中RNAi途径的当前知识,以及其他一些应用的问题,例如重组RNA的生产和交付,这对于将RNAi建立为作物植物中昆虫控制的可靠技术至关重要。