我们的系统家庭,包括四个EVTOL无人机和一个无人机端口解决方案,集成了硬件,软件和AI,以提供创新的空中智能,用于多域操作和软件定义的防御。我们的可扩展和功能解决方案是动态环境中高效且网络情境意识的关键。
摘要:随着战区日益复杂和对手不断推进,开发大量具有成本效益的无人机系统可能会为美国军队提供令人信服的能力。因此,研究问题涉及现有小型无人机系统的最佳组合,这些系统在给定预算和集群规模的情况下,提供最佳性能指标,即平均/标准偏差的检测时间,以及任务成功率。这些小型无人机系统的要求是它们属于美国空军 1-3 组无人机系统。研究小组使用 Python 模拟在 5 海里半径范围内的随机目标位置内收集不同小型无人机系统的单独性能数据。然后将这些指标输入到优化程序中,该程序在某些硬约束条件下选择最佳组合。结果表明,6 个 ALADiN 和 24 个并行 Firefly 的组合是所有三个测试场景中的最佳组合。总成本为 160 万美元。利用模拟得出的结论,该团队还能够推荐哪些属性对于成功的任务最为重要,从而节省开发过程中的时间和金钱。
Xtend 即将根据五角大楼合同交付 Skylord Xtender sUAS 2021-05-25 16:54:19.401 GMT (Janes) 根据最近的一份合同,Xtend 将很快开始向五角大楼交付其 Skylord Xtender 小型无人机系统 (sUAS)。 2021 年第三季度,该公司将向五角大楼战术单位交付数十套 Xtender 战术 sUAS 平台原型系统进行作战测试 要点 根据最近的一份合同,Xtend 将很快向五角大楼交付其 Skylord Xtender sUAS 的原型 Xtender 是一种专为近距离作战和城市战而打造的室内 ISR 解决方案 根据最近的一份合同,Xtend 将很快开始向五角大楼交付其 Skylord Xtender 小型无人机系统 (sUAS)。 2021 年第三季度,该公司将向五角大楼战术部队交付数十套 Xtender 战术 sUAS 平台原型系统,用于作战测试和评估 (OT&E)。该合同于 2021 年初颁发,由国防部负责特种作战/低强度冲突 (SO/LIC) 的助理部长、不规则战争技术支持局 (IWTSD) 颁发。Xtend 发言人于 5 月 24 日表示,该公司参与了该合同的竞标,但他没有提供更多细节。Xtend 业务开发和销售副总裁 Ido Bar-On 于 4 月 20 日告诉 Janes,Xtender 是一种室内情报、监视和侦察 (ISR) 解决方案,专为近距离战斗和城市战争而设计。Xtender 提供了一种独特的以人为本的机器界面技术,使操作员能够从安全距离远程干预危险情况。Xtender 操作员佩戴虚拟现实 (VR) 护目镜来查看飞机的视频源。 Bar-On 表示,这让操作员能够感受到飞机的一部分。操作员有一个手动控制器来指挥飞机,Bar-On 表示,这与任天堂 Wii 视频游戏系统使用的控制器类似。Xtender 在 2 月 5 日至 3 月 5 日于佐治亚州本宁堡举行的 2021 年美国陆军远征勇士实验 (AEWE) 上进行了演示。
•我们提出了为多型SUA开发光学湍流感测能力。•差分温度传感方法将适应SUA的量化温度结构参数。传感器放置的迭代测试将有助于减轻撑杆对湍流感应的影响。•我们将确定使用多翼suas进行光学闪烁测量的潜力和限制,并制定最佳的策略来取样不受干扰的气氛。
随着小型无人(即遥控)飞机系统 (sUAS) 的应用数量不断增长,需要进行全面的安全风险评估研究以确保它们安全地融入国家空域系统。恶劣天气是 sUAS 的一个尚未得到广泛解决的危害源。本文提出了一个分析天气预报数据的框架,为 sUAS 操作员提供风险评估信息,供他们用于做出风险意识决策。sUAS 天气风险模型 (sWRM) 框架使用天气预报、人口密度、结构密度和 sUAS 数据来量化农村到城市环境中 sUAS 运行的天气危害风险。sWRM 是遵循美国联邦航空管理局的安全风险管理指南开发的。sWRM 的开发突出了一些航空航天和气象研究领域,在 sUAS 天气风险模型投入运行之前必须解决这些问题。这些研究领域中,最主要的是开发广泛可用的精细尺度(1 公里)天气预报,并开展广泛的 sUAS 飞行报告研究,以准确估计所提框架中使用的贝叶斯信念网络条件概率表的参数。作为概念验证,sWRM 已在科罗拉多州博尔德应用,使用高分辨率快速刷新天气产品。sWRM 的初步演示突出了考虑高分辨率天气和环境数据的详细风险评估模型的潜在有效性。
随着小型无人(即遥控)飞机系统 (sUAS) 的应用数量不断增长,需要进行全面的安全风险评估研究以确保它们安全地融入国家空域系统。恶劣天气是 sUAS 的一个尚未得到广泛解决的危害源。本文提出了一个分析天气预报数据的框架,为 sUAS 操作员提供风险评估信息,供他们用于做出风险意识决策。sUAS 天气风险模型 (sWRM) 框架使用天气预报、人口密度、结构密度和 sUAS 数据来量化农村到城市环境中 sUAS 运行的天气危害风险。sWRM 是遵循美国联邦航空管理局的安全风险管理指南开发的。sWRM 的开发突出了一些航空航天和气象研究领域,在 sUAS 天气风险模型投入运行之前必须解决这些问题。这些研究领域中,最主要的是开发广泛可用的精细尺度(1 公里)天气预报,并开展广泛的 sUAS 飞行报告研究,以准确估计所提框架中使用的贝叶斯信念网络条件概率表的参数。作为概念验证,sWRM 已在科罗拉多州博尔德应用,使用高分辨率快速刷新天气产品。sWRM 的初步演示突出了考虑高分辨率天气和环境数据的详细风险评估模型的潜在有效性。
随着小型无人(即遥控)飞机系统 (sUAS) 的应用数量不断增长,需要进行全面的安全风险评估研究以确保它们安全地融入国家空域系统。恶劣天气是 sUAS 的一个尚未得到广泛解决的危害源。本文提出了一个分析天气预报数据的框架,为 sUAS 操作员提供风险评估信息,供他们用于做出风险意识决策。sUAS 天气风险模型 (sWRM) 框架使用天气预报、人口密度、结构密度和 sUAS 数据来量化农村到城市环境中 sUAS 运行的天气危害风险。sWRM 是遵循美国联邦航空管理局的安全风险管理指南开发的。sWRM 的开发突出了一些航空航天和气象研究领域,在 sUAS 天气风险模型投入运行之前必须解决这些问题。这些研究领域中,最主要的是开发广泛可用的精细尺度(1 公里)天气预报,并开展广泛的 sUAS 飞行报告研究,以准确估计所提框架中使用的贝叶斯信念网络条件概率表的参数。作为概念验证,sWRM 已在科罗拉多州博尔德应用,使用高分辨率快速刷新天气产品。sWRM 的初步演示突出了考虑高分辨率天气和环境数据的详细风险评估模型的潜在有效性。
随着小型无人(即遥控)飞机系统 (sUAS) 的应用数量不断增长,需要进行全面的安全风险评估研究以确保它们安全地融入国家空域系统。恶劣天气是 sUAS 的一个尚未得到广泛解决的危害源。本文提出了一个分析天气预报数据的框架,为 sUAS 操作员提供风险评估信息,供他们用于做出风险意识决策。sUAS 天气风险模型 (sWRM) 框架使用天气预报、人口密度、结构密度和 sUAS 数据来量化农村到城市环境中 sUAS 运行的天气危害风险。sWRM 是遵循美国联邦航空管理局的安全风险管理指南开发的。sWRM 的开发突出了一些航空航天和气象研究领域,在 sUAS 天气风险模型投入运行之前必须解决这些问题。这些研究领域中,最主要的是开发广泛可用的精细尺度(1 公里)天气预报,并开展广泛的 sUAS 飞行报告研究,以准确估计所提框架中使用的贝叶斯信念网络条件概率表的参数。作为概念验证,sWRM 已在科罗拉多州博尔德应用,使用高分辨率快速刷新天气产品。sWRM 的初步演示突出了考虑高分辨率天气和环境数据的详细风险评估模型的潜在有效性。
随着小型无人(即遥控)飞机系统 (sUAS) 的应用数量不断增长,需要进行全面的安全风险评估研究以确保它们安全融入国家空域系统。恶劣天气是尚未得到广泛解决的 sUAS 危害源之一。本文提出了一个分析天气预报数据的框架,为 sUAS 操作员提供风险评估信息,供他们用于做出风险意识决策。sUAS 天气风险模型 (sWRM) 框架使用天气预报、人口密度、结构密度和 sUAS 数据量化农村到城市环境中 sUAS 运行的天气危害风险。sWRM 是遵循美国联邦航空管理局的安全风险管理指南开发的。sWRM 的开发凸显了一些航空航天和气象研究领域,在 sUAS 天气风险模型投入运行之前必须解决这些问题。这些研究领域中的主要研究领域是开发广泛可用的精细尺度(1 公里)天气预报,并开展广泛的 sUAS 飞行报告研究,以准确估计所提框架中使用的贝叶斯信念网络条件概率表的参数。作为概念验证,sWRM 已在科罗拉多州博尔德应用,使用高分辨率快速刷新天气产品。sWRM 的初步演示突出了详细风险评估的潜在有效性
野火需要有人驾驶飞机和地面操作人员采取严格、标准化的响应措施。在野火场景中,火灾交通区 (FTA) 将在火灾周围 5 海里范围内建立,延伸至地面以上 (AGL) 至少 2500 英尺。这与 FAA 建立的临时飞行限制 (TFR) 不同,后者合法限制飞机进入空域。FTA 是一种在消防机构内建立协议的通信工具。如果在野火事件上空实施 TFR,则 FTA 规则适用于 TFR。跨机构空中监督指南 1 详细说明了标准化程序,允许响应野火场景的不同机构无需事先演练即可进行协作。几十年来,载人飞机一直是火灾探测的主要平台,因为它们具有机动性、快速部署和任务灵活性。2 然而,地面人员的目视检测仍然是一项普遍的任务,尽管它枯燥、肮脏且危险。地面观察员前往某个位置检查火势蔓延通常比部署载人飞机更省时、更省钱。无人机 (UAV) 可用于弥补载人飞机和地面人员职责之间的差距。由于尺寸较小,无人机比载人飞机更机动、成本更低、部署速度更快,同时比派人执行任务更安全。因此,已经进行了大量研究,利用带有机载传感器的无人机进行火灾监测和探测。3 然而,由于 FTA 中有关飞机的规定,大多数研究仅限于模拟或观察受控燃烧的飞行测试。在进行本研究时,尚无将无人机系统 (UAS) 纳入 FTA 下的野火事件的标准程序。PMS 515 4 概述了在 FTA 中实施 UAS 的最低标准,但没有详细介绍任务和平台类型。为了将 UAS 与载人飞机一起安全地集成到野火事件中,可扩展交通管理应急响应行动 (STEReO) 项目旨在利用 NASA 设计的 UAS 交通管理 (UTM) 基础设施 5 在城市环境中安全地分配 UAS 的空域。STEReO 的主要目标是将 UAS 融入野火事件中,以缩短灾难响应时间并提高操作员意识,实现大规模飞机操作,并展示安全性和弹性。6