我们的系统家庭,包括四个EVTOL无人机和一个无人机端口解决方案,集成了硬件,软件和AI,以提供创新的空中智能,用于多域操作和软件定义的防御。我们的可扩展和功能解决方案是动态环境中高效且网络情境意识的关键。
俄乌战争清楚地表明了小型无人机系统(SUAS)在现代和未来战场上的重要性。随着美国陆军从欧洲冲突中吸取教训,并将自身重点转向为大规模作战行动(LSCO)做准备,各级部队的 SUAS 整合成为首要训练重点。尽管美国陆军率先使用 SUAS 系统,但我们未能像俄罗斯和乌克兰武装部队那样快速地大规模部署和实施该技术。如果不在战术层面获取和训练相关平台,我们就无法实现战略和战役层面对 SUAS 整合的高度重视和需求。一支普通骑兵部队通常拥有一两架“渡鸦”(无人机)和几架“黑黄蜂”(无人机)。这些数量不足,需要补救。
此 USACE ETP 豁免仅适用于非战术 SUAS 操作。USACE 指挥官认识到使用 COTS SUAS 产品可能存在网络和信息安全漏洞。2020 财年国防授权法案 (NDAA) 848 和 EO 13981 旨在禁止采购和使用中华人民共和国 (PRC) SUAS,但反 SUAS 测试除外,因此,USACE 已放弃中国生产的 SUAS 操作豁免请求。使用在中国制造或组装的传输组件、固件、逻辑板或软件的 SUAS 已从 USACE 操作库存中移除,并留作反 SUAS 测试、救灾任务和工程研究与发展中心 (ERDC) 实验室试飞。美国陆军工程兵团遵守 2021 年 6 月 23 日发布的 HQDA EXORD 178-21 国防部 (DOD)-陆军综合报告和五角大楼高层领导备忘录——为实施 2020 财年国防授权法第 848 条而操作和采购无人机的程序指南,2021 年 9 月 8 日。
1。一个被动1米球,枪弹丸发射车(7英寸枪孔,3英寸亚尺度弹丸),一个分阶段 - 阵列跟踪雷达V-I 2。一个2米的被动球,带有反式思考,火箭升起的车辆,干涉仪型跟踪系统v-3 3 3.一个被动的球体,一个谷壳罐,火箭车,一个拼手阵列跟踪雷达V-3 4。旋转电线密度计(SWD),热敏电阻/降落伞和谷壳,火箭发射车,一个阶梯阵列雷达和两个遥测地面站V-3 5。分子荧光密度计(MFD),热敏电阻/降落伞,谷壳,火箭发射车辆,一个相阵列跟踪雷达和两个遥测地面站V-7 6。一个皮托系统,热敏电阻/降落伞和谷壳,火箭射击的车辆,一个阶梯式阵列跟踪雷达和两个遥测地面statiqns v-9
随着小型无人(即遥控)飞机系统 (sUAS) 的应用数量不断增长,需要进行全面的安全风险评估研究以确保它们安全地融入国家空域系统。恶劣天气是 sUAS 的一个尚未得到广泛解决的危害源。本文提出了一个分析天气预报数据的框架,为 sUAS 操作员提供风险评估信息,供他们用于做出风险意识决策。sUAS 天气风险模型 (sWRM) 框架使用天气预报、人口密度、结构密度和 sUAS 数据来量化农村到城市环境中 sUAS 运行的天气危害风险。sWRM 是遵循美国联邦航空管理局的安全风险管理指南开发的。sWRM 的开发突出了一些航空航天和气象研究领域,在 sUAS 天气风险模型投入运行之前必须解决这些问题。这些研究领域中,最主要的是开发广泛可用的精细尺度(1 公里)天气预报,并开展广泛的 sUAS 飞行报告研究,以准确估计所提框架中使用的贝叶斯信念网络条件概率表的参数。作为概念验证,sWRM 已在科罗拉多州博尔德应用,使用高分辨率快速刷新天气产品。sWRM 的初步演示突出了考虑高分辨率天气和环境数据的详细风险评估模型的潜在有效性。
野火需要有人驾驶飞机和地面操作人员采取严格、标准化的响应措施。在野火场景中,火灾交通区 (FTA) 将在火灾周围 5 海里范围内建立,延伸至地面以上 (AGL) 至少 2500 英尺。这与 FAA 建立的临时飞行限制 (TFR) 不同,后者合法限制飞机进入空域。FTA 是一种在消防机构内建立协议的通信工具。如果在野火事件上空实施 TFR,则 FTA 规则适用于 TFR。跨机构空中监督指南 1 详细说明了标准化程序,允许响应野火场景的不同机构无需事先演练即可进行协作。几十年来,载人飞机一直是火灾探测的主要平台,因为它们具有机动性、快速部署和任务灵活性。2 然而,地面人员的目视检测仍然是一项普遍的任务,尽管它枯燥、肮脏且危险。地面观察员前往某个位置检查火势蔓延通常比部署载人飞机更省时、更省钱。无人机 (UAV) 可用于弥补载人飞机和地面人员职责之间的差距。由于尺寸较小,无人机比载人飞机更机动、成本更低、部署速度更快,同时比派人执行任务更安全。因此,已经进行了大量研究,利用带有机载传感器的无人机进行火灾监测和探测。3 然而,由于 FTA 中有关飞机的规定,大多数研究仅限于模拟或观察受控燃烧的飞行测试。在进行本研究时,尚无将无人机系统 (UAS) 纳入 FTA 下的野火事件的标准程序。PMS 515 4 概述了在 FTA 中实施 UAS 的最低标准,但没有详细介绍任务和平台类型。为了将 UAS 与载人飞机一起安全地集成到野火事件中,可扩展交通管理应急响应行动 (STEReO) 项目旨在利用 NASA 设计的 UAS 交通管理 (UTM) 基础设施 5 在城市环境中安全地分配 UAS 的空域。STEReO 的主要目标是将 UAS 融入野火事件中,以缩短灾难响应时间并提高操作员意识,实现大规模飞机操作,并展示安全性和弹性。6
随着小型无人(即遥控)飞机系统 (sUAS) 的应用数量不断增长,需要进行全面的安全风险评估研究以确保它们安全地融入国家空域系统。恶劣天气是 sUAS 的一个尚未得到广泛解决的危害源。本文提出了一个分析天气预报数据的框架,为 sUAS 操作员提供风险评估信息,供他们用于做出风险意识决策。sUAS 天气风险模型 (sWRM) 框架使用天气预报、人口密度、结构密度和 sUAS 数据来量化农村到城市环境中 sUAS 运行的天气危害风险。sWRM 是遵循美国联邦航空管理局的安全风险管理指南开发的。sWRM 的开发突出了一些航空航天和气象研究领域,在 sUAS 天气风险模型投入运行之前必须解决这些问题。这些研究领域中,最主要的是开发广泛可用的精细尺度(1 公里)天气预报,并开展广泛的 sUAS 飞行报告研究,以准确估计所提框架中使用的贝叶斯信念网络条件概率表的参数。作为概念验证,sWRM 已在科罗拉多州博尔德应用,使用高分辨率快速刷新天气产品。sWRM 的初步演示突出了考虑高分辨率天气和环境数据的详细风险评估模型的潜在有效性。
随着小型无人(即遥控)飞机系统 (sUAS) 的应用数量不断增长,需要进行全面的安全风险评估研究以确保它们安全地融入国家空域系统。恶劣天气是 sUAS 的一个尚未得到广泛解决的危害源。本文提出了一个分析天气预报数据的框架,为 sUAS 操作员提供风险评估信息,供他们用于做出风险意识决策。sUAS 天气风险模型 (sWRM) 框架使用天气预报、人口密度、结构密度和 sUAS 数据来量化农村到城市环境中 sUAS 运行的天气危害风险。sWRM 是遵循美国联邦航空管理局的安全风险管理指南开发的。sWRM 的开发突出了一些航空航天和气象研究领域,在 sUAS 天气风险模型投入运行之前必须解决这些问题。这些研究领域中,最主要的是开发广泛可用的精细尺度(1 公里)天气预报,并开展广泛的 sUAS 飞行报告研究,以准确估计所提框架中使用的贝叶斯信念网络条件概率表的参数。作为概念验证,sWRM 已在科罗拉多州博尔德应用,使用高分辨率快速刷新天气产品。sWRM 的初步演示突出了考虑高分辨率天气和环境数据的详细风险评估模型的潜在有效性。
野火需要有人驾驶飞机和地面操作人员采取严格、标准化的响应措施。在野火场景中,火灾交通区 (FTA) 将在火灾周围 5 海里范围内建立,延伸至地面以上 (AGL) 至少 2500 英尺。这与 FAA 建立的临时飞行限制 (TFR) 不同,后者合法限制飞机进入空域。FTA 是一种在消防机构内建立协议的通信工具。如果在野火事件上空实施 TFR,则 FTA 规则适用于 TFR。跨机构空中监督指南 1 详细说明了标准化程序,允许响应野火场景的不同机构无需事先演练即可进行协作。几十年来,载人飞机一直是火灾探测的主要平台,因为它们具有机动性、快速部署和任务灵活性。2 然而,地面人员的目视检测仍然是一项普遍的任务,尽管它枯燥、肮脏且危险。地面观察员前往某个位置检查火势蔓延通常比部署载人飞机更省时、更省钱。无人机 (UAV) 可用于弥补载人飞机和地面人员职责之间的差距。由于尺寸较小,无人机比载人飞机更机动、成本更低、部署速度更快,同时比派人执行任务更安全。因此,已经进行了大量研究,利用带有机载传感器的无人机进行火灾监测和探测。3 然而,由于 FTA 中有关飞机的规定,大多数研究仅限于模拟或观察受控燃烧的飞行测试。在进行本研究时,尚无将无人机系统 (UAS) 纳入 FTA 下的野火事件的标准程序。PMS 515 4 概述了在 FTA 中实施 UAS 的最低标准,但没有详细介绍任务和平台类型。为了将 UAS 与载人飞机一起安全地集成到野火事件中,可扩展交通管理应急响应行动 (STEReO) 项目旨在利用 NASA 设计的 UAS 交通管理 (UTM) 基础设施 5 在城市环境中安全地分配 UAS 的空域。STEReO 的主要目标是将 UAS 融入野火事件中,以缩短灾难响应时间并提高操作员意识,实现大规模飞机操作,并展示安全性和弹性。6