图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
背景 CBCT 是一种获取三维射线图像的方法,在牙科领域越来越受欢迎。生成的图像易于使用,并且比传统的二维射线照片提供更多信息。三维成像能够捕获骨骼和软组织,然后可以一起或单独显示(图 1)。与螺旋 CT 和扇形 CT 等早期 CT 技术一样,可以观察到“逐片”轴向、矢状和冠状图像,但 CBCT 软件还结合了参考线,使这些切片的定位变得不那么复杂。例如,即使只观察冠状视图或完整图像的一小部分,矢状切片视图中的线也会指示正在分析的切片或对象的高度和位置(图 2)。CBCT 本质上是数字化的,它使用计算机程序从一系列 250 到 300 张二维图像构建三维体积。CBCT 术语反映了这一重点。例如,体素用于代替像素,因为它指的是体积而不是二维空间。图像文件是 DICOM(数字成像和
背景 CBCT 是一种获取三维射线图像的方法,在牙科领域越来越受欢迎。生成的图像易于使用,并且比传统的二维射线照片提供更多信息。三维成像能够捕获骨骼和软组织,然后可以一起或单独显示(图 1)。与螺旋 CT 和扇形 CT 等早期 CT 技术一样,可以观察到“逐片”轴向、矢状和冠状图像,但 CBCT 软件还结合了参考线,使这些切片的定位变得不那么复杂。例如,即使只观察冠状视图或完整图像的一小部分,矢状切片视图中的线也会指示正在分析的切片或对象的高度和位置(图 2)。CBCT 本质上是数字化的,它使用计算机程序从一系列 250 到 300 张二维图像构建三维体积。CBCT 术语反映了这一重点。例如,体素用于代替像素,因为它指的是体积而不是二维空间。图像文件是 DICOM(数字成像和
摘要|背景:中风后,大多数患者经常遭受步行能力和平衡的降低。恢复步行能力和提高平衡是中风康复的主要目标。跑步机经常用于临床设置以实现这些目标。除了镜子以进行实时额叶视图外,还向视觉反馈添加尺寸已被证明可以增强步态。因此,在跑步机训练中设计额外的实时视觉反馈很重要,尤其是涉及的矢状视图。目的:这项研究的目的是测试跑步机训练期间的实时矢状视觉反馈是否优于常规的镜像反馈跑步机训练计划,以提高中风后的步行速度和平衡。方法/设计:重新访问试验(跑步机训练中中风后的实时视觉反馈)已在印度临床试验注册中注册(CTRI/2023/10/058299)。In this two-arm randomized control trial, which will be a single-blinded study, 42 eligible stroke survivors undergoing rehabilitation will be randomly allocated (1:1 ratio) to either real-time visual sagittal feedback along with front mirror (experimental) group or only front mirror treadmill training (control) group, all the participants will receive 15 sessions of treadmill training for up to 15 min at a safe self-selected speed over 5-6周。重新访问(实验)组将接收涉及下肢轨迹的实时,视觉矢状视图,以及跑步机训练期间的常规前镜视图,并将被要求修改其步态模式。对照组只有常规的前镜视图反馈才会接受跑步机步行训练。临床和步态评估将在培训最后一次课程之后以及随访期间的第9周进行基线和步态评估。感兴趣的结果度量是步行速度(主要)和平衡(次要),将在基线之前进行测量,15个训练后以及培训后的第9周进行测量。讨论:这项重新访问试验将提供洞察力,并有助于在跑步机培训期间在冲程后步态康复中纳入实时视觉反馈的现有创新和修改。这些发现将有助于更好地设计步态康复计划,并通过跑步机进行后击后对象,以提高步行速度,并为那些在社区移动方面遇到更大困难的人平衡。我们预计重访训练的人将表现出提高的步行能力。
摘要:目的:准确评估颅面对称性在正畸实践中至关重要但具有挑战性。我们提出使用磁共振成像(MRI)对颅面总体轮廓和软硬组织对称性的细节进行三维分析。方法:为此,对志愿者拍摄了最近描述的黑骨和软组织 MRI 序列,并使用坐标系进行分析。由于各种颅面组织(脑-颅骨-面部和神经-骨-肌肉)是相互作用的结构,因此脑中线和面部中线高度一致。在该坐标系中,大脑前镰(大脑镰)被用作正中矢状面。可以使用坐标系分析新提出的通过黑骨和软组织序列获取 MRI 数据的方法。结果:坐标系可以在软组织和黑骨序列之间转换,从而提供准确的三维颅面特征分析以确定颅面不对称性。结论:本初步研究为颅面对称性的三维分析、正中矢状面的确定及避免放射治疗提出了新的思路和方法。
Majdak,Piotr,Bruno Masiero和Janina Fels。 “在个性化和非个人化的串扰取消系统中的声音定位。” Jasa2013。 Brinkmann,Fabian,Alexander Lindau和Stefan Weinzierl。 “关于个体动态双耳合成的真实性。” JASA2017。 Jenny,Claudia和Christoph Reuter。 “虚拟现实中个性化的头部相关传递函数的可用性:矢状平面声音本地化中具有感知属性的经验研究。” JMIR认真游戏2020。Majdak,Piotr,Bruno Masiero和Janina Fels。“在个性化和非个人化的串扰取消系统中的声音定位。” Jasa2013。Brinkmann,Fabian,Alexander Lindau和Stefan Weinzierl。“关于个体动态双耳合成的真实性。” JASA2017。Jenny,Claudia和Christoph Reuter。 “虚拟现实中个性化的头部相关传递函数的可用性:矢状平面声音本地化中具有感知属性的经验研究。” JMIR认真游戏2020。Jenny,Claudia和Christoph Reuter。“虚拟现实中个性化的头部相关传递函数的可用性:矢状平面声音本地化中具有感知属性的经验研究。”JMIR认真游戏2020。
摘要:磁共振成像是一种将计算机技术,强磁场和无线电波结合起来的医学设备,以模拟人体部位的表示并产生更详细和清晰的图像,其中一种是大脑上的面部潮流。MRI脑检查旨在查看大脑的解剖结构和异常。本研究旨在确定MRI脑检查程序以及轴向3D嘉年华序列在面部TIC中的作用。使用稳态采集(FIESTA)序列评估头神经的3D快速成像。使用的研究方法是使用案例研究方法的描述性研究。数据收集是2023年7月至2023年8月使用GE 1.5 Tesla MRI飞机进行的。该受试者由临床面部TIC患者组成。数据收集是通过观察,访谈和文档进行的。使用矢状T1,Coronal PD/T2,轴向PD/T2/T1/FLAIR/EPI,轴向3D不相干的GRE T1,轴向/斜Sem,轴向/轴向DWI,轴向DWI,扩散张量成像(DTI),轴向灌注序列。成像,而在现场,使用定位序列,轴向DWI,轴向T2 Flair,轴向T2,轴向T1,轴向T2* GRE,矢状T1,冠状T1,Coronal T2和Axair 3D Fiesta。
图1 MNI152空间中RSFMRI指标和QSM图像的处理管道的概述。从QSM图像中提取的静脉中,在天然空间中生成了距离图和传播直径图。然后将图像注册到MNI152空间。The top row depicts the rsfMRI metrics in MNI152 space: sagittal view of the amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), Hurst Exponent (HE), Coherence [Coherence (Cohe)-Regional Homogeneity (ReHo)], Kendall's Coefficient Concordance (KCC)-ReHo and一个参与者的特征向量中心(EC)值。底部行:来自天然空间中同一参与者的定量敏感性映射(QSM)图像,从容器分割档案中(阈值= 0.5;天然空间),所得的部分体积(PV;第二行)和直径图(第三行)(第三行)。PV和直径图排除了所有静脉<0.3 mm。距离图和传播直径图分别从PV和天然空间中的直径图计算出来。距离> 6.7 mm的组织体素。地图已注册到MNI152空间,并仅限于GM(第二行和第三行的最后一列)。
图4:管道生产的工作台场景,以评估注册和掩盖精度。分别通过细绿色和蓝色线条显示了自由表面的白色和曲面。ASL体积脑面膜轮廓显示在洋红色中。白色盒子表示ASL获取的视野,转变为ASL网格的T1W空间。青色线(在矢状视图中在小脑的底部看到)表示位于视野外的ASL脑面膜的一部分。Greyscale中的基本图像是完整335