使用CRISPR/CAS(群集的定期间隔短的plindromic重复序列/CRISPR相关蛋白)进行基因组编辑系统允许使用CAS核酸酶和人工指导RNA诱变基因组的靶向区域。由于出现这种突变的效率可变,并且由于修复过程会产生一系列突变,因此需要确定许多经历诱变的个体的靶向基因座的基因组序列。,我们为生成扩增子提供完整的方案,直到识别目标区域的确切突变为止。crispr-发现可以用来在一次测序中处理数千个人。我们成功地识别了一系列合酶1突变型线,其中与野生型相比,水杨酸的产生受损。TESE特征将CRISPR-FIDER建立为一种使用CRISPR/CAS9系统对基因组的个体的高通量,成本效率和有效的基因分型方法。
醋酸钙 IF001-00 醋酸地塞米松 IF002-00 醋酸地塞米松乳膏 EF001-00 醋酸氢化可的松 IF003-00 醋酸甲羟孕酮 IF004-01 醋酸钠 IF005-00 乙酰唑胺 IF006-00 乙酰半胱氨酸 IF007-00 N-乙酰-L-蛋氨酸 IF008-00 阿昔洛韦 IF009-00 阿昔洛韦片 EF002-00 阿昔洛韦乳膏 EF003-00 乙酰水杨酸 IF010-01 乙酰水杨酸片 EF004-00 抗坏血酸IF011-01 抗坏血酸片 EF005-00 抗坏血酸注射液 EF006-00 苯甲酸 IF012-01 硼酸 IF013-00 柠檬酸 IF014-00 脱氢胆酸 IF015-00 硬脂酸 IF016-00 叶酸 IF017-00 叶酸片 EF007-00 磷酸 IF018-00 乳酸 IF019-00 甲芬那酸 IF020-01 萘啶酸 IF021-00 萘啶酸片 EF008-00 萘啶酸口服混悬液 EF009-00烟酸 IF022-01 对氨基苯甲酸 IF023-00 水杨酸 IF024-01 山梨酸 IF025-00 三氯乙酸 IF026-00 十一烯酸 IF027-00 腺苷 IF028-01 琼脂 IF029-00 灌溉用无菌水 IF030-00 注射用水 IF031-00 纯净水 IF032-00
摘要:气孔免疫是植物病原体防御系统的主要门。与发病机理相关的非表达1(NPR1)是水杨酸(SA)受体,这对于气孔防御至关重要。sa诱导了气孔闭合,但是NPR1在后卫细胞中的特定作用及其对系统性获得的耐药性(SAR)的贡献仍然很大未知。在这项研究中,我们比较了野生型拟南芥和NPR1-1基因敲除突变体对病原体攻击的反应,从气孔运动和蛋白质组学变化方面。我们发现NPR1不调节气孔密度,但是在病原体攻击下,NPR1-1突变体未能关闭气孔,导致更多病原体进入叶子。此外,NPR1-1突变体中的ROS水平高于野生型中的ROS水平,并且几种参与碳固化,氧化磷酸化,糖酵解和谷胱甘肽代谢的蛋白质在丰度上有所不同。我们的发现表明,移动SAR信号通过启动ROS爆发改变了气孔免疫反应,而NPR1-1突变体通过翻译调节具有替代性启动效应。
叶绿体形态在免疫期间发生变化,从而产生了称为stromules的小管状结构。stromules沿着微管延伸,并沿核细胞锚定向肌动蛋白丝,以促进核周chlo-oplast簇。这促进了防御分子/蛋白质从叶绿体到核的运输。缺乏茎在免疫中的直接作用的证据,因为目前,没有已知的基因来调节Stromule生物发生。我们表明,在TNL [TIR(Toll/Interleukin-1 Receptor) - 型链球菌形成所必需的含有驱动蛋白的Calponin同源(CH)结构域(诱导Stromules 1)所需的calponin同源(CH)域(诱导Stromules 1)是必需的。此外,tnl介导的对细菌和病毒病原体的免疫力是必需的。基斯1的微管结合运动结构域是基质形成所必需的,而肌动蛋白结合,CH结构域是核叶叶绿体簇需要的。我们表明,KIS1通过早期的免疫信号成分EDS1和PAD4与水杨酸 - 需要Kis1的stromules发挥作用。因此,KIS1代表stromule生物发生的玩家。
摘要:植物激素又称植物生长调节剂,可调节植物的各种生理过程,包括发芽、生长以及对生物和非生物胁迫的反应。由真菌、细菌和病毒等病原体引起的植物疾病通常会改变激素途径,导致植物中同时诱导拮抗激素和协同激素。然而,在抗性品种中,激素反应遵循更连续的模式。植物激素信号通路主要沿着两个拮抗轴极化:一侧是水杨酸 (SA) 和茉莉酸 (JA) 途径,另一侧是乙烯途径。除了 SA、JA 和乙烯之外,其他生长调节剂,如生长素、油菜素类固醇、细胞分裂素和脱落酸 (ABA),也在植物对生物胁迫的反应中发挥重要作用,并且因其在植物-病原体相互作用中的重要性而越来越受到重视。病原体可以调节激素的生物合成和信号传导,从而抑制植物的防御能力并改变细胞环境,促进其感染和增殖。在本文中,我们将回顾对植物激素的功能和调节、植物防御反应的调节以及植物激素与防御途径之间的协同作用和串扰的最新进展。
✉ 通讯和材料索取请发送至 Pamela C. Ronald 或 Guotian Li。pcronald@ucdavis.edu;li4@mail.hzau.edu.cn。作者贡献 GL、GS、PS 和 PCR 设计了实验。GL 和 RJ 筛选并分析了 rbl1 突变体的基因组数据。GS、PS、XK、XH、YL、YW、QG、XC 和 LZ 进行了植物感染试验。GS、XK、XH 和 YW 进行了 DAB、ROS、水杨酸、亚细胞定位、RT-qPCR 和 GUS 组织化学分析。LY 和 ZQ 进行了生物信息学分析。GS、JG、LF、LG、JCM、YB 和 QL 进行了脂质组学分析。YZ 和 YW 进行了 rbl1 的化学补充分析。 GS、QS、QG、Q. Zhou 和 T.-YC 进行了酵母突变体互补分析。JZ 和 KX 生成了 CRISPR 构建体。XK、XH、YL、W. Zhou、W. Zhang、Q. Zeng 和 ZK 筛选了编辑后的品系。GS、YW、RH 和 JX 进行了田间试验和农艺性状分析。GL 和 GS 起草了手稿,GL、GS、PS、LF、LZ、LG、KX、JCM、QL、YB、ZK 和 PCR 修改了手稿。所有作者都阅读并批准了最终手稿。
茉莉酸(JA),乙烯(ET)和水杨酸(SA)是三个主要的植物激素协调植物防御反应,这三个均与防御真菌病原体氧气的防御有关。但是,它们独特的作用方式和可能的相互作用仍然未知,部分原因是所有有关其活动的空间信息均缺乏。在这里,我们着手通过使用新开发的基于荧光的转录记者线的实时显微镜来探测植物免疫的这一空间方面。我们创建了一个植物免疫系统启动子(GG-PIPS)的Greengate矢量收集,使我们能够以单细胞分辨率对免疫途径的局部激活进行成像。使用此系统,我们证明了SA和JA在邻近真菌定植位点的不同的根细胞中彼此之间的空间分开作用,而ET则有助于这两组。sa和et诱导了过度敏感的反应,作为第一道防线,而JA和ET在单独的第二道防线中控制了针对病原体的积极防御。缺乏解决单个细胞水平上植物免疫反应的这种方法,这项工作表明,基于显微镜的方法可以详细了解植物免疫反应。
霜霉病抗性 6 (DMR6) 蛋白是一种 2-氧戊二酸 (2OG) 和 Fe(II) 依赖性加氧酶,参与水杨酸 (SA) 代谢。SA 被认为是一种非生物胁迫耐受性增强剂,在番茄中发现 DMR6 的失活会增加其水平并诱导对多种病原体的抗病性。通过应用 CRISPR/Cas9 技术,我们生成了 Sldmr6-1 番茄突变体并测试了它们对干旱和晚疫病的耐受性。野生型番茄品种‘San Marzano’及其 Sldmr6-1 突变体被剥夺了 7 天的水。WT植物表现出严重的枯萎,而T 2 Sldmr6-1突变体叶片肿胀,并保持较高的土壤相对含水量。生态生理测量表明,Sldmr6-1突变体采取了节水行为,通过降低气孔导度来降低蒸腾速率。在干旱胁迫下,同化率也降低,导致气孔下腔中的CO 2浓度没有改变,并提高了水分利用效率。此外,在Sldmr6-1突变体中,干旱胁迫诱导抗氧化相关基因SlAPX和SlGST的上调以及参与ABA分解代谢的SlCYP707A2基因的下调。最后,我们首次在番茄中强调,Sldmr6-1 突变体对晚疫病的病原菌致病菌的敏感性降低。
多环芳烃 (PAH) 是威胁生态系统和人类健康的普遍污染物。在这里,我们分离并鉴定了一株新菌株 Hydrogenibacillus sp. N12,它是一种嗜热 PAH 降解菌。菌株 N12 在 60!C 以上利用萘作为唯一碳源和能量来源,并且还与许多其他 PAH 共同代谢。通过气相色谱-质谱 (GC-MS) 和稳定同位素分析在萘分解代谢中鉴定了代谢物。基于所鉴定的代谢物,我们提出了两种可能的代谢途径,一种是通过水杨酸,另一种是通过邻苯二甲酸。全基因组测序显示,菌株 N12 拥有一条 2.6 Mb 的小染色体。结合遗传和转录信息,我们揭示了萘降解的新基因簇。这些基因被命名为 nar AaAb,预计编码萘双加氧酶的 α 和 β 亚基,随后被亚克隆到大肠杆菌中,并通过全细胞转化检测酶活性。还表征了降解其他几种三环 PAH 的能力,表明除了萘降解基因簇外,菌株 N12 中还共存着其他组成性表达的酶系统。我们的研究为嗜热 PAH 降解剂在生物技术和环境管理应用中的潜力提供了见解。
这项研究的目的是使用链霉亲素诱导的糖尿病模型以及其α淀粉酶和α糖苷酶抑制活性来评估抗糖尿病性churna的抗糖尿病特性。[1]特别普遍的代谢疾病之一,糖尿病影响全球2.8%,预计到2025年将达到5.4%。草药长期以来一直被视为一种极为宝贵的药物。结果,它们越来越多地在当代护理中出现。因此,基于综述,药物降低血糖水平的能力主要归因于多酚,类黄酮,萜类化合物,香豆素和其他成分的存在。抗糖尿病冠 - 由翼龙,阿扎尔达里奇塔(Azardirachta),azardirachta,ocimum sanctum,syzygium cumini,trigonella foenum graceum,emblica officinalis,glycyrrhiza glababra,curcyrias salligr sall sall sall sall,抗糖尿病活动。[2]使用淀粉碘和二硝基水杨酸(DNSA)方法进行体外抗糖尿病筛查,该方法涉及α-淀粉酶抑制和IC 50值。[3]粉末特性像灰值,安息角度,密度,散装密度,挖掘密度,lod,pH值一样。每个参数已超过标准限制。