•是通过S'训练的学习模型•火车测试拆分的想法独立验证集纠正预测错误•无论预测器有多糟糕,都无偏见;一个好的模型降低方差
LIDAR UPSMPLING对于机器人和自动驾驶汽车的启示系统来说是一项艰巨的任务,这是由于大型场景的稀疏结构稀疏和不规则的结构。最近的作品建议通过将LIDAR数据从3D欧几里得空间传播到2D图像空间中的一个超级分辨率问题来解决此问题。尽管他们的方法可以生成具有细粒细节的高分辨率范围图像,但由此产生的3D点云是10个模糊细节并预测无效的点。在此pa-per中,我们提出了郁金香,这是一种从低分辨率激光雷达输入中重建高分辨率激光圈云的新方法。我们还遵循一种基于图像的方法,但特定地修改了基于Swin-Transformer网络的贴片和窗口几何形状,以更好地拟合范围图像的特性。我们在三个公共现实世界和模拟数据集上进行了几项实验。郁金香在所有相关指标中都优于最先进的方法,并且比以前的工作生成了强大,更现实的点云。该代码可在https://github.com/ethz-asl/tulip.git上找到。
结果:我们发现了38个潜在的因果关系,将肠道微生物组中的遗传易感性与淋巴瘤的发育联系起来。一些更明显的结果如下:coprobacter属(OR = 0.619,95%CI 0.438 - 0.873,p = 0.006)表现出对霍奇金淋巴瘤(HL)的潜在保护作用。属属(OR = 0.473,95%CI 0.278 - 0.807,p = 0.006)是弥漫性大B细胞淋巴瘤的保护因素。reminococcaceae属(OR = 0.541,95%CI 0.341 - 0.857,p = 0.009)具有针对卵泡淋巴瘤的暗示性保护作用。lachnospireceaeucg001(OR = 0.354,95%CI 0.198 - 0.631,p = 0.0004)显示出针对T/NK细胞淋巴瘤的保护性。Q检验表明缺乏异质性,MR-EGGER检验没有显示出显着的水平多层。此外,保留的分析未能识别出对整体结果产生重大影响的任何SNP。
第 2 天:2024 年 5 月 28 日,星期二 – 合作伙伴介绍采样点 9:00 9:30 Jaroslav Černi 水研究所 – JCWI,Србија 9:30 9:45 讨论 9:45 10:05 布达佩斯技术与经济大学 – BME,Magyarország 10:05 10:15 讨论 10:15 10:35 保加利亚水协会 – BWA,България 10:35 10:45 讨论 10:45 11:05 国家管理局“罗马尼亚水域” – NARW,România 11:05 11:15 讨论 11:15 11:30 咖啡休息 11:30 11:50 水研究所 – WRI,Slovensko 11:50 12:00 讨论 12:00 12:20 克罗地亚水域 – HV、Hrvatska 12:20 12:30 讨论 12:30 12:50 Jožef Stefan 研究所 – JSI、斯洛文尼亚 12:50 13:00 讨论 13:00 13:15 结论 – 需要采取的行动 (Radmila Milačič, JSI) 13:15 14:15 午餐
对于某些可区分的函数h:r d→r和d二维向量的总数。这种特征的示例包括例如总均值,比率或相关系数。这也称为有限的人口推断问题(Beaumont和Haziza 2022)。我们进一步假设n很大,每个单个实验的计算成本也是不可行的。在这种情况下,研究经常诉诸于子采样。亚采样方法在过去几年中的人口急剧增加。例如,MA,Mahoney和Yu(2015); Ma等。(2022)引入了大数据回归的杠杆采样,随后启发了逻辑回归的类似发展(Wang,Zhu,Zhu和Ma 2018; Yao and Wang 2019)广义线性模型(AI等人。2021b; Yu等。2022)和分位回归(Ai等人2021a; Wang,Peng和Zhao 2021)。同样,Dai,Song和Wang(2022)开发了
与TEMPUS XF或XF+(105或523基因,液体活检)和Tempus XT(648个基因,具有匹配的Buffy Coat匹配的固体肿瘤)NGS NGS测定法对晚期泛体肿瘤样品进行测序。在90天内收集样品。在固体组织和体细胞变体中检测到的躯体变异符合正态分布,并将落入两个标准偏差内的变异等位基因级分(VAF)作为相应液体活检中的选定生物标志物,以计算每个样品的肿瘤 - 信息CTDNA TF。
量子误差缓解技术可以降低当前量子硬件上的噪声,而无需容错量子误差校正。例如,准概率方法使用有噪声的量子计算机模拟无噪声量子计算机,但前提是仅产生可观测量的正确预期值。这种误差缓解技术的成本表现为采样开销,其随着校正门的数量呈指数增长。在这项工作中,我们提出了一种基于数学优化的算法,旨在以噪声感知的方式选择准概率分解。与现有方法相比,这直接导致采样开销的基础显著降低。新算法的一个关键要素是一种稳健的准概率方法,它允许通过半有限规划在近似误差和采样开销之间进行权衡。
项目建议中所述的目标是(i)模拟自动环境DNA(EDNA)采样器/分析仪和(ii)Edna与成像数据的交叉引用。但是,在项目计划期间,这些目标经过修改以适应现场和实验室后勤的可能性。焦点是朝着比较主动和被动的EDNA采样方法的转移,以比较它们在从环境中捕获鱼DNA的有效性。通过过滤海水将短期目标确定为主动样品收集,并通过部署和检索被发行和“自制”设备的被动采样器来收集被动样本。为了比较方法,从样品中提取Edna并使用实时定量PCR(QPCR)测定法进行扩增,以验证FISH DNA的存在和数量。该项目的媒介和长期目标包括用于主动和被动EDNA采样的有效抽样方案的定义,以及提供采样方法在描述当地物种丰富度/生物多样性方面更有效的建议。这些
2型糖尿病(T2DM)在21世纪(国际糖尿病联合会(IDF),2022年)以惊人的速度增长。T2DM及其并发症在所有地区都带来了沉重的疾病负担(Ali等,2022)。确定与T2DM发展有因果关系的因素可以为预防疾病提供重要的证据基础,并促进新治疗策略的发展。肠道菌群(GM)是一个复杂的生态系统,由大约4×10 13种共生细菌,原生动物,真菌,古细菌和病毒组成(Chen等,2021; Martino等,2022)。gm参与了人体的各种生理活性,例如代谢,炎症过程和免疫反应(Fan and Pedersen,2021; Gill等,2022)。越来越多的证据表明,转基因在T2DM等代谢疾病中起重要作用(Gurung等,2020)。T2DM患者患有代谢疾病和慢性炎症状态,并伴有GM障碍(Yang等,2021)。还发现了GM组成的变化与T2DM的发展以及相关并发症的显着关联(Iatcu等,2021),例如,门类细菌群/企业的不平衡与近距离渗透性相关联,与近距离渗透性相关联,并渗透性渗透性,伴有细胞质,伴有细胞质,并渗透性,并伴有细胞处理效果。随后的DM的炎症反应特征(Iatcu等,2021)。也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。 尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。 孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。 由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险