该学院发布的医疗法律指南和建议仅用于一般信息。应从您的医疗防御组织或专业协会寻求适当的特定建议。该教师在其董事会上有一名或多个MDO的高级代表,但是为了避免疑问,尚未从任何医疗防御机构寻求对医疗法律指南或该学院发表的建议。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月8日。 https://doi.org/10.1101/2024.01.21.576499 doi:Biorxiv Preprint
摘要尽管首次尿液 (FVU) 越来越多地被认可为一种可靠的人乳头瘤病毒 (HPV) 检测样本,但缺乏经过充分验证的检测方法,无法对 FVU 样本进行疫苗影响监测所需的完整定量基因分型。Allplex HPV28 检测能够单独检测 28 种 HPV 基因型,是一种很有前途的方法。我们旨在评估其在 FVU 样本上的基因型特异性性能,并优化 FVU 预分析。我们选择了使用 Colli-Pee 装置 (20 mL,带 UCM) 采集的 701 个 FVU 样本,这些样本基于之前使用 GP5+/6+-PCR 反向线印迹 (GP5+/6+ RLB) 和 Amicon 过滤 (AF) 后的 E7-MPG 进行的测试,以富集 HPV 阳性 (n = 630)。我们首先评估了根据不同的预分析方法 Allplex HPV28 基因型特异性阳性的可比性和一致性。随后,我们对 Allplex HPV28 与 GP5+/6+ RLB AF 和 E7-MPG AF 进行了基因型特异性比较。在比较预离心和非离心 DNA 提取时,以及在比较手动和自动 DNA 提取时,Allplex HPV28 检测的 HPV 阳性率没有显著差异。在 Allplex HPV28 和 GP5+/6+ RLB AF 之间观察到了良好的基因型特异性一致性,Allplex HPV28 对所有 28 种 HPV 基因型的敏感性略高(平均 Allplex HPV28:GP5+/6+ RLB AF 比率为 1.729)。与 E7-MPG AF 相比,Allplex HPV28 对所有 21 种重叠 HPV 基因型的灵敏度较低(平均 Allplex HPV28:E7-MPG AF 比率为 0.588)。本研究结果结合实际实施考虑,支持在自动或手动 DNA 提取后使用 Allplex HPV28 检测,无需预离心,用于基于 FVU 样本的 HPV 研究,尤其是用于疫苗对 HPV 流行率影响监测的研究。
抽象的舌头拭子(TS)采样与定量PCR(QPCR)结合检测结核分枝杆菌(MTB)DNA是痰液测试结核病(TB)诊断的有希望的替代方法。在先前的研究中,擦拭舌头的敏感性通常低于痰液。在这项研究中,我们评估了两种提高灵敏度的策略。一方面,用于从2 ml悬浮液中浓缩舌头细菌,这些悬浮液从高容量的泡沫拭子样品中洗脱。将沉淀重悬于500 µL悬浮液中,然后在双目标qPCR之前机械裂解以检测MTB插入元件为6110,为1081。分级实验表明,可沉积分数中存在临床拭子样品中的大多数MTB DNA信号(99.22%±1.46%)。当适用于从124个具有推定性结核病的南非人收集的存档泡沫拭子时,该策略表现出83%的敏感性(71/86)和100%特异性(38/38),相对于痰液微生物学参考标准(MRS; Sputum; Sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum; sputum》;第二种策略使用了序列特异性磁捕获(SSMAC)来浓缩从MTB细胞释放的DNA。该方案是在存档的Copan floqswabs蜂拥而至的木材样品上进行了评估,这些拭子样品是从128个具有推定性结核病的南非参与者中收集的。将洗脱为500 µL缓冲液的材料机械裂解。通过蛋白酶K消化悬浮液,与生物素化的双靶寡核苷酸探针杂交,然后使用磁分离浓缩约20倍。在对浓缩物的双目标qPCR测试后,该策略相对于痰液MRS表现出90%的敏感性(83/92)和97%的特异性(35/36)。这些结果指向了用于检测TS中MTB DNA的可自动性高敏性方法的道路。
采集了 30 位捐献者的唾液样本,其中 90% 的分析前 DNA 质量 >2 µg。从 27 个样本中提取了 HMW DNA,其中 93% 的产量 >500 ng。提取后,使用 Qubit dsDNA BR 检测试剂盒对 DNA 进行定量,并使用 Femto Pulse 系统(安捷伦科技公司)进行表征。使用 SMRTbell ® 制备试剂盒 3.0 为部分样本制备 HiFi 文库,并使用 SPRQ™ 化学方法在 Revio 系统上进行测序。每个样本都在一个 Revio SMRT 测序池上进行测序。表 1 总结了五个代表性样本的测序数据。这些样本产生了 4.7 到 15.9 µg 的 HMW DNA。HiFi 测序产量为 119 到 133 Gb 的 HiFi 数据,每个基因组的覆盖率为 27 到 40 倍,足以进行全面的 WGS 变异检测。 75% 到 95% 的读数映射到人类参考基因组 (GRCh38)。
摘要:在这项研究中,它旨在通过经过验证的静态静态顶空气体色谱法(GC-MS)方法研究番茄酱,胡椒粉,番茄酱,蛋黄酱,蛋黄酱和烧烤酱样品中的苯甲酸(BA)和丝氨酸(SOA)浓度。水杨酸(SALA)用作内标,测量值分别在BA和SOA的宽线性浓度范围内进行,分别为2.5-5000和12.5-5000。确定检测限为1.5和4.5 mg/kg,而BA和SOA的定量极限(LOQ)分别为2.5 mg/kg。在开放的番茄酱样品中发现BA和SOA的平均回收%值分别为98.5%和98.7%,而在蛋黄酱样本中,这些值分别为98.7%和100.3%。确认了所提出的方法的准确性。在实际样品中,发现合适的番茄酱和工业酱样品的结果,但在某些番茄和胡椒粉产品中以传统或自制的名称出售,尽管禁止在糊剂中使用保留剂。对于公共卫生来说,防止在土耳其美食以及在世界上普遍消费的糊状物中掺假,这是必不可少的。因此,由于其可靠性和消耗较小的毒性化学试剂,因此提出的方法可用于食品控制实验室。
分离并研究了能够分解碳氢化合物火箭功率煤油T-1的细菌。在研究过程中,从被碳氢化合物火箭燃料污染的土壤中分离出30种微生物培养物,其中选择了9种分离株,积极地将煤油T-1作为碳的唯一水域。在这些筛查分析中显示的四种营养培养基中最佳结果的菌株,其浓度为T-1煤油1%(10 g/kg)生长良好的培养物微生物的分离株:№4、8、8、14、23、5、5、18、20、20、25和Yeast№12/5。在具有T-1煤油浓度为2%(20 g/kg)和5%(50 g/kg)的培养基上的分离株在细菌培养物中表现出良好的生长。5、18、20、25和酵母12/5。通过生理和生化特征鉴定出所选的微生物:№5 - 节肢动物Sp。,№18 - calcoaceticum,№20 - №20 - sp。,№25-№25-微球杆菌Ro-Seus,№12/5- candida sp。创造了孤立微生物的培养条件。 已经确定了节肢动杆菌培养的最佳发展温度。 5为25-30°C,calcoceticetum。 18是30-35°,玫瑰花。 25为25-37°。 念珠菌的培养时间持续时间。 12/5是1天,对于其余的研究文化 - 2天。创造了孤立微生物的培养条件。已经确定了节肢动杆菌培养的最佳发展温度。5为25-30°C,calcoceticetum。18是30-35°,玫瑰花。25为25-37°。念珠菌的培养时间持续时间。12/5是1天,对于其余的研究文化 - 2天。
摘要:CO 2在耗尽的碳酸盐形成中的地下存储是限制其人为释放并最大程度地减少全球变暖的合适方法。岩石可湿性是控制CO 2捕获机制及其在地理储存形成中其遏制安全性的重要因素。地理储物岩包含先天有机酸,从而改变了岩石表面从亲水条件到疏水状态的润湿性,从而降低了CO 2存储能力。在这项研究中,通常将其释放到环境中的有毒染料的甲基橙色用作可湿性的修饰,以将硬脂酸老化方解石(油湿)的润湿性更改为湿。本研究使用接触角技术(无柄滴法)检查甲基橙(10-100 mg/l)对CO 2/盐水/盐水酸酸盐衰老的变性系统在地理储存条件下(即25和50°C的温度为5-20 mpa的压力)的润湿性的影响。结果表明,有机酸污染的岩石表面的前进和逐渐接触角(θa和θr)在暴露于甲基橙甲基时会大大降低,分别达到62°和58°的最小值,在20 mpa和50 mpa中的存在中,其含量为20 mpa和50°C。进入地下水库,以降低环境污染的水平,同时增加碳酸盐地层的CO 2存储能力。
将组织活检基因组分析的结果与补充液体活检数据相结合,可以全面了解肿瘤生物学。Illumina Cell-Free DNA Prep with Enrichment 是一种多功能文库制备试剂盒,可用于从循环无细胞 DNA (cfDNA) 或从 FFPE 组织样本中提取的基因组 DNA (gDNA) 制备可用于测序的文库 (图 1)。该工作流程包括用于纠正错误和减少假阳性的唯一分子标识符 (UMI),从而能够准确、灵敏地检测 FFPE 肿瘤样本中的低频突变。Illumina Cell-Free DNA Prep with Enrichment 与 Illumina 和第三方富集探针或面板兼容,以支持灵活的实验设计。本应用说明展示了 Illumina Cell-Free DNA Prep with Enrichment 在生成高质量 NGS 文库和从 FFPE 样本中鉴定低频体细胞变异方面的优异性能。
1 华盛顿大学儿科系遗传医学分部,美国华盛顿州西雅图 98195;2 华盛顿大学分子与细胞生物学项目,美国华盛顿州西雅图 98195;3 华盛顿大学基因组科学系、4 实验室医学与病理学系,美国华盛顿州西雅图 98195;5 华盛顿大学公共卫生遗传学研究所,美国华盛顿州西雅图 98195;6 南非约翰内斯堡 2193 威特沃特斯兰德大学健康科学学院悉尼布伦纳分子生物科学研究所;7 太平洋西北研究所,美国华盛顿州西雅图 98122;8 纽约大学生物系,美国纽约州纽约 10003;9 Alamya Health,美国路易斯安那州巴吞鲁日 70806; 10 应用和转化神经基因组学组,VIB 分子神经病学中心,VIB,安特卫普 2650,比利时;11 安特卫普大学生物医学科学系,安特卫普 2000,比利时;12 美国国家标准与技术研究所材料测量实验室,马里兰州盖瑟斯堡 20899,美国;13 田纳西大学健康科学中心遗传学、基因组学和信息学系,田纳西州孟菲斯 38163,美国;14 人类科技城,意大利米兰 20157;15 约翰霍普金斯大学计算机科学系,马里兰州巴尔的摩 21218,美国;16 墨西哥国立自治大学国际人类基因组研究实验室,人类基因组国际研究实验室,墨西哥城 76230,墨西哥; 17 纽约基因组中心,纽约,纽约州 10013,美国;18 Outlier Informatics Inc.,萨斯喀彻温省萨斯卡通 S7H 1L4,加拿大;19 西雅图儿童医院实验室部,华盛顿州西雅图 98195,美国;20 冷泉港实验室,纽约冷泉港 11724,美国;21 斯坦福大学遗传学系,22 计算机科学系,加利福尼亚州斯坦福 94305,美国;23 贝勒医学院人类基因组测序中心,德克萨斯州休斯顿 77030,美国;24 贝勒医学院分子和人类遗传学系,德克萨斯州休斯顿 77030,美国;25 莱斯大学计算机科学系,德克萨斯州休斯顿 77251,美国; 26 美国国立卫生研究院国家癌症研究所癌症数据科学实验室,马里兰州贝塞斯达 20892,美国;