分析附生植物圈中的微生物群落可能具有挑战性,尤其是在应用基于测序的技术时,由于植物来源的生物分子(例如核酸)的干扰。对附生微生物组的最新研究的综述表明,机械和酶促方法都广泛使用。在这里,我们评估了两种裂解方法对DNA提取产率,纯度,完整性和微生物16S rRNA基因拷贝数在不同提取条件下的每种模板基因组DNA的影响。此外,使用16S rRNA基因扩增子测序研究了对细菌群落组成,多样性和可重复性的影响。酶促裂解方法产生的DNA增加了一到两个数量级,但DNA质量是次优的。相反,使用Me-Chanical方法制备的样品显示出高的DNA纯度,尽管产量较低。出乎意料的是,机械裂解显示出比酶裂解更高的DNA完整性数(DIN)。16S rRNA扩增子测序结果表明,通过机械破坏制备的样品表现出可重复的相似的微生物群落组成,无论提取条件如何。相比之下,酶促裂解方法在不同的提取条件下导致分类学组成不一致。这项研究表明,机械DNA破坏比酶促破坏更适合附生层样品。
沿海泻湖是加利福尼亚州流行和受威胁物种的重要栖息地,这些栖息地影响了城市化和干旱的影响。环境DNA已被提升为帮助监测生物群落的一种方式,但在不同的方案中引入的偏见尚待理解,该方案旨在克服旨在克服研究中的独特系统提出的挑战。浑浊水是这些系统中EDNA恢复的一种方法论挑战,因为它迅速堵塞了过滤器,从而阻止了样品的及时处理。我们研究了两种解决方案产生的社区组合中的偏见,以克服由于浊度而缓慢的效果:冻结在填充前(用于存储目的和长期处理)和使用沉积物(与水样品相反)。在下游EDNA分析中对社区组成的偏差评估进行了两组底漆,12s(Fin)和16S(细菌和古细菌)。我们的结果表明,在使用较大的孔径(3 µm)的滤波器时,在填充前的冷冻水对每个底漆的社区组成有不同的影响。尽管如此,在关注菲什社区(12s)时,预冰的水样品仍然可以作为存储和处理浊度水样品的可行替代方案。应谨慎使用沉积物样品作为处理水样品的替代方法,至少应增加采样的生物复制和/或体积的数量。
表面活性剂浓度与样品液滴的直径成正比。29浊度法是快速量化微生物的另一种方法。该方法基于以下理论:在低pH值下脂肽生物表面活性剂的溶解度将降低,并且该方法适合对高浓度脂肽溶液的定量分析。30高性能液相色谱(HPLC)也用于致命蛋白肽生物表面活性剂的定性和定量分析。通常通过紫外检测器分析,但是脂肽的紫外线吸收相对较弱,并且不适合定量分析较低浓度的脂肽溶液。31 - 33当脂肪肽从1-溴乙酰基苯乙烯衍生而来时,可以通过肾上腺探测器对其进行分析。34尽管改进的HPLC方法克服了脂肽溶液的痕量检测的限制,但脂肽的检测极限较低,但衍生过程很复杂,并且准确的定量阳离子范围受到限制。此外,据报道了一种基于可见的颜色shi s筛查表面上产生的新定量方法。35可以通过颜色变化来筛选表面表面菌株的菌株很方便,但是该方法的定量准确性不是很好。还采用了其他方法或技术来估计通过傅立叶变换红外(FT-IR)表格 - 36个溶血活性37或界面张力测试在筛选菌株期间生物表面活性剂的产量。但是,由于过程的复杂性或不方便的校准,这些方法不适用于生物表面活性剂的快速和准确定量。石油扩散技术是定量分析生物表面活性剂含量的好方法。它依靠生物表面活性剂来减少油LM的表面张力,以在油LM的中心形成一个油扩散环,然后根据扩散环的直径来判断生物表面活性剂的含量。但是,传统石油传播技术的不稳定和巨大错误限制了其进一步的应用。不同的分析方法具有其自身的特征,并且这些分析方法的建立使生物表面活性剂的定量分析和越来越完善的表面活性剂量筛选,这也为本文开发提供了理论基础。这项研究旨在修改先前描述的定性石油扩散技术38,以便将其定期应用以量化生物表面活性剂的浓度。它包括(1)通过优化油性材料,图像采集和计算方法来估计修饰的油扩散技术。(2)完全准确的定量阳离子25 - 300毫克每L rhamnolipid标准溶液,5 - 200 mg每L脂蛋白肽标准溶液,以及快速定量单类生物性活性剂溶液。(3)通过建立不同生物表面活性剂标准解决方案的定量标准曲线,比较和分析了改进的技术和传统技术的优势。最后,判断了油样水样中鼠李糖脂和脂肽的含量。结果为研究微生物油位移技术机制提供了一些理论和数据支持。
磁共振成像(MRI)是神经科学研究和神经系统疾病的临床诊断的众所周知且广泛的成像方式,主要是由于其能够可视化脑微观质量并量化各种代谢物。此外,它的无创性使从体内脑样本与组织学的高分辨率MRI与组织学的相关性有可能,从而支持了神经退行性疾病的研究,例如阿尔茨海默氏病或帕金森氏病。但是,离体MRI的质量和分辨率高度取决于具有最大化填充因子的专业射频线圈的可用性,用于研究样品的不同大小和形状。例如,在超高田中全身MRI扫描仪中并不总是在商业上可用的小型,专用的射频(RF)线圈。即使对于超高场临床前扫描仪,特异性RF线圈的体内MRI也很昂贵,并且并不总是可用。在这里,我们描述了两个RF线圈的设计和构造,基于7T全身扫描仪中人脑组织的螺线管几何形状以及9.4T陶醉师中Marmoset脑样品的离体MRI的体内MRI。我们设计了7T螺线管RF线圈,以最大程度地提高磁带上的人脑样品的填充因子,以进行组织学,而构建了9.4T螺线管以适应50 mL离心管的条件。两个螺线管设计都以收发器模式运行。测得的B 1 +地图显示出感兴趣的成像量的高均匀性,并且与成像量相比,信噪比高。使用9.4T螺线管线圈以60 µm的各向同性分辨率获取了人脑样品的高分辨率(在平面为500 µm切片的厚度为500 µm)。
摘要PACBIO测序技术提供了最完整,最准确,连续的基因组,并已被用作许多生物多样性,保护和农业类似学计划中的核心技术。在这里,我们在工作流程中提出了重大的进步,这些进步通过提供DNA隔离的方法进一步促进测序工作,并为库准备过程提供了增强的尺寸选择。这些改进应用于各种植物,昆虫和动物样品,并在新的Revio系统上进行了测序,从每个库中产生了90多个GB的数据。
肌球蛋白移动真核生物的肌肉,是一种微小的分子运动[1]。它通过消耗三磷酸腺苷(ATP)来产生力并进行机械工作。作为线性电动机,它可以通过活细胞内的细胞骨架的轨道样肌动蛋白丝或微管进行运动。以这种方式,亚细胞结构,以及较大的单位(例如细胞或生物)可以以定向方式移动[1,2]。使用基因工程方法,已经有可能产生向后移动的肌球蛋白纳米运动[3]。X射线结构分析和动力学研究等方法进一步阐明了具有技术兴趣的运动蛋白的有序纳米结构的自我组织。对于分子医学,了解分子线性运动和组织中稳定结构之间的结构关系也很重要。骨骼肌由伸长的纤维细胞和肌纤维沿整个长度平行排列[1]组成。肌原纤维包含纵向肉瘤,其肌动蛋白肌膜的高阶和肌球蛋白蛋白具有收缩。骨骼肌的众所周知的横向条纹是由于肌纤维在肌肉纤维中的平行排列而产生的(图1)。几种肌肉纤维沿相同方向捆绑在一起。这些由细胞外基质的结构蛋白(尤其是胶原蛋白纤维)组织。从胶原蛋白家族的大而异构的群体中,发现大部分是纤维状胶原蛋白。但是这种变化可能具有很大的潜力。由于非中心对称结构,胶原蛋白和肌球蛋白的特异性显微成像是可能的[4,5,6,7,8]。使用聚焦激光辐射的超短脉冲会导致瞬态高功率密度和二阶频率加倍(第二次谐波产生,SHG)[7,8]。通过在近红外范围内使用激发波长,第二个谐波渗透到组织中,肌肉组织可以在三个维度中无损地映射(图2)。SHG极化法可用于区分肌球蛋白和胶原蛋白,并进一步胶原蛋白纤维的方向[7,8,9]。可以通过对向后信号进行评估来获得进一步的对比信息。到目前为止,几乎没有任何方法可以调节SHG生成波长以区分肌球蛋白和胶原蛋白纤维[8,9]。但是,一些矛盾的结果要求通过评估光谱信息进行多模式研究。到目前为止,在生物样品中的第二次谐波中,尚未证明完全kleinman对称性的假设和SHG效率的单调降低。相反,最近的研究表明了一种复杂的行为,更明显地使用向后信号而不是前向信号[8,9]。
近年来,由于各种环境污染的内分泌干扰化学物质 (EDC),人们对食品的关注度不断提高。EDC 有可能通过破坏生态平衡造成环境危害。1 主要的女性性激素 17b-雌二醇 (E2) 在 EDC 的富集过程中起着至关重要的作用。E2 是最小的天然雌激素类固醇激素,对青春期、成年期和大部分妊娠期女性生殖组织(如胸腔、子宫、肠道蠕动和阴道)的发育和调节非常重要。2,3 由于激素对环境的生理影响,天然存在的雌激素结合物已成为食品工业的一个新问题。4 在这些天然环境雌激素中,E2 的潜力远远大于主要代谢物雌三醇 (E3) 和雌酮 (E1)。 E2 被广泛用于饲料加工行业,非法用于促进动物生长、产奶量、提高牛和家禽的肥肉比例。1,5,6 尽管 E2 在女性体内发挥着一些关键作用,但当 E2 通过食物链污染进入人体时,会带来一些不良影响,如肿瘤、乳腺癌、内分泌紊乱、细胞生长异常等。7 尤其是 E2 的高活性,即使在非常低的水平
Bairoliya, S.、Koh, J. Z. X. 和 Cao, B. (2022)。环境样本中的细胞外 DNA:出现、提取、量化以及对微生物多样性评估的影响。应用与环境微生物学,88(3),e01845-21-。https://dx.doi.org/10.1128/AEM.01845-21
尽管酪氨酸激酶抑制剂 (TKI) 的治疗药物监测 (TDM) 具有改善治疗结果和最大限度降低毒性的巨大潜力,但在肿瘤患者的标准护理中,它尚未常规实施。TKI 是 TDM 的完美候选药物,因为它们的治疗窗口相对较小,药代动力学在不同患者之间的差异较大,并且药物浓度与疗效之间存在相关性。此外,大多数可用的 TKI 都容易受到各种药物相互作用的影响,因此可以通过 TDM 检查药物依从性。通过传统静脉采血获得的血浆是 TKI 的 TDM 标准基质。然而,使用血浆会带来一些与采样和稳定性相关的挑战。使用干血微量样本可以克服这些限制。通过手指刺破采集样本的侵入性最小,而且方便简单,患者可以在家中自行采样。小样本量的采集对于儿科人群或药代动力学研究尤其重要。此外,使用干燥基质可提高化合物的稳定性,从而使样品的运输和储存更加方便且经济高效。在本综述中,我们重点介绍了用于 TKI 定量的不同干血微量样本方法。尽管干血微量采样具有许多优点,但定量分析也存在一些特定的困难。讨论了基于微量采样的方法的不同方法学方面,并将其应用于 TKI 的 TDM。我们重点关注样品制备、分析、内部标准、样品稀释、外部质量控制、干血斑特定验证参数、稳定性和血液到血浆的转化方法。偏差血细胞比容值对定量结果的各种影响将在单独的部分中讨论,因为这是一个关键问题,无疑是干血微量样本分析中最广泛讨论的问题。最后,讨论了在现实家庭采样环境中使用微量样本进行 TDM 的适用性和可行性。