3.1子宫内膜癌从子宫内壁开始。症状可能包括阴道出血,骨盆疼痛,意外的体重减轻,恶心和疲劳。大约23%的子宫内膜癌患者的亚型具有较高的微卫星不稳定性(MSI-H)或DNA不匹配修复(DMMR)缺乏生物标志物。子宫内膜癌对预期寿命和生活质量都有重大影响。患有晚期或复发性子宫内膜癌的患者(这意味着癌症已经超过子宫超出了子宫或以前的治疗后回来)的预后不佳。只有15%在第4阶段诊断出5年或更长时间。影响不仅限于身体健康,而且还限于人们及其家人的心理健康和福祉。患者专家强调,此阶段有效的治疗选择有限,使人们感到沮丧,绝望和抛弃。他们强调了缺乏
日内瓦,瑞士,2025年2月26日 - 全球半导体领导者Stmicroelectronics(NYSE:STM)在电子应用程序范围内为客户提供服务,它介绍了Teseo VI全球导航卫星系统(GNSS)的TESEO VI家族(GNSS)接收者的AIMED AIMED AIMET AIMET AIMET AIMET AIMET AIMET AIMET AIM AIM AIM EAMET AIM AIM AIM AIM置于优先位置。对于汽车行业来说,TESEO VI芯片和模块将是高级驾驶系统(ADA),智能车载系统以及自动驾驶等安全关键应用的核心组成部分。他们还旨在提高多个工业应用中的定位功能,包括资产跟踪器,用于家居运输的移动机器人,管理机械和智能农业中的机械监测,基本电台等定时系统等。“我们的新TESEO VI接收器在定位引擎之间取得了真正的突破:它们是第一个在单个模具中整合多构造和四频带信号处理的人;它们是第一个嵌入双臂®核心架构,可实现非常高的性能和ASIL级别的辅助和自动驾驶驾驶的安全。最后但并非最不重要的一点是,他们嵌入了ST的专有嵌入式非挥发性内存(PCM),从而为新的精确定位解决方案提供了一个非常集成,成本效益且可靠的平台,”卢卡·塞兰特(Luca Celant),数字音频和信号求解,stmicroelectronics。“ ST的新卫星游动接收器将支持汽车ADAS应用程序中令人兴奋的高级功能,并启用工业公司实施的许多新用例。” TESEO VI是市场上第一个将所有必要的系统元素集成到一个厘米精度中的所有必要系统元素,并支持同时进行多构造和Quad-Band操作。这项创新简化了最终用户导航和定位产品的开发,即使在诸如Urban Canyons之类的具有挑战性的条件下,也可以提高可靠性,并降低了材料清单成本。此外,单个芯片加速了上市时间,并允许紧凑而轻巧的形式。新的Teseo VI家族由精确定位的接收器芯片筹码数十年的经验,并整合了多种ST专有技术,包括精确定位和先进的嵌入式内存。
摘要:贫困是一个复杂的社会经济问题,影响了全世界数百万的人。分配和导致贫困的因素对于有效的决策,资源分配和有针对性的干预措施至关重要。卫星成像技术和深度学习技术的出现在该领域开辟了新的可能性。本研究旨在探索使用深度学习和卫星图像来预测地区贫困水平的潜力。这项研究的主要重点是培训RNN模型,以学习卫星图像与财富指数之间的复杂关系。该系统成功证明了利用卫星图像来预测各个地区城市财富指数的能力。数据可用性和质量,计算资源和监管约束仔细管理,以确保系统的可靠性和有效性。这项研究证明了利用卫星图像和深度学习技术的可行性和有效性。它有助于数据驱动的贫困分析领域,并为在区域和全球规模上理解和解决贫困提供了有价值的工具。
太空技术在沟通,防御和研究中起着越来越重要的作用。随着发射更多的卫星,碰撞的风险越来越大,并且卫星成为军事目标。卫星 - 碎片碰撞有可能破坏一两个卫星,从而阻止了这些轨道多年的使用。尽管以更快的速度逐渐消除的卫星可能是一种解决方案,但轨道碎片落回地球可能会造成环境伤害。欧洲需要更好地了解风险,并采取监管和外交步骤,以确保在保护国内和全球利益的同时继续使用太空。外太空是巨大而空的 - 或者过去。地球周围的轨道是由航天器使用的,并非每个轨道都适合每个目的,将卫星集中在最有用的卫星中。发射次数急剧增加:2023年,发布了大约2个600次发射,比2018年增加了五倍,比2010年增加了10倍。同时,随着私人可重复使用的车辆的引入,每公斤的成本降低了。新项目形成了大型卫星星座,例如Starlink(已经在数千个中的数字中)弹出,因为正如Draghi报告中指出的空间被视为关键战略部门。欧洲航天局(ESA)计数目前约有20,000个物体。其中大多数都是太空碎片 - 从无功能的卫星到用完的火箭助推器到小螺丝的所有事物 - 这种碎片在进入大气之前会积聚多年。NASA指出,几年后,低海拔(低于600公里)的卫星将脱离轨道,而超过1000公里的卫星可以作为千年来绕着垃圾旋转。每块碎屑可能会严重破坏或破坏其他航天器,因为它们以将螺栓变成子弹的速度移动。更糟糕的是,问题化合物,创建了称为凯斯勒综合症的级联反应。碰撞卫星会瓦解,从而在无法预测的轨迹上产生数千个新的弹丸。最近,以这种方式以这种方式引起了700个新危害。从国防的角度来看,一颗卫星的破坏带来了范围内行星的后果。在2007年,中国的Fengyun-1C任务展示了一种反卫星系统:成功破坏了单个高海拔卫星的造成足够的碎屑,以使当时已知空间对象的数量增加25%。对太空碎片的关注导致制造商,太空发射提供商,太空机构和其他利益相关者开始考虑其卫星的“终身”计划。SpaceX的Starlink表示,它打算积极地脱离其卫星,并在重新进入大气时设计其旨在完全燃烧。ESA和NASA都有办事处和政策来解决轨道碎片,美国(联合国)联邦通信委员会最近要求通信卫星发射申请人提交缓解碎片的计划。联合国有关于该主题的非约束指南。潜在的影响和发展
这个多轨道卫星群将结合低地球轨道 (LEO)、地球静止轨道 (GEO) 和中地球轨道 (MEO) 卫星的优势。它将为欧盟及其成员国提供安全通信服务,并为欧洲公民、私营公司和政府机构提供宽带连接。欧盟太空计划的这一新组成部分将通过弹性和超安全的空间和地面系统,利用该卫星群的南北轨道,结束欧洲以及整个非洲的盲区。它可能包括
本文旨在分析两种可能的系留卫星系统架构的性能,这些系统用作分布式雷达探测仪的平台。第一种架构是横向轨道定向的系留卫星系统,利用与低地球轨道稀薄大气相互作用产生的空气动力进行控制和稳定。第二种架构涉及通过陀螺稳定控制的系留卫星系统,通过使系统围绕轨道平面内的轴旋转来实现。在简要介绍雷达探测技术之后,介绍了描述系统几何形状及其特性的方法,然后将这两种架构的性能相互比较并与当前最先进的技术进行比较。通过分析建模的标称行为,结果表明,这两种提出的架构可以在一个轨道内分别以最大横向轨道分辨率实现连续或多次观测,从而最大限度地减少杂波噪声。与通常每条轨道只能实现最多四次观测的编队飞行架构相比,这是一种显著的性能改进。最后研究了每种架构的优缺点,并讨论了其可能的任务场景。
尽管 QKD 链路可以达到传统方式无法达到的安全级别,但由于光纤损耗会随着距离的增加而呈指数级增长,因此 QKD 链路在全球范围内的实施面临着关键限制。由于量子中继器技术不够成熟,地面 QKD 装置的可达距离最多只能限制在几百公里 [1-3]。因此,卫星中继被认为是实现洲际链路非常有前途的解决方案 [4],多年来,已发表了多项关于自由空间卫星 QKD 的理论和实验可行性研究 [5-11]。然而,特别是对于卫星到地面的链路,大气湍流对信号传播的影响需要优化单模光纤 (SMF) 中的光耦合,这对于与地面站连接必不可少。
GNC 测试设施的 Joris Belhadj 补充道:“实验室的模型卫星(称为 BlackGEO)的制造包含了地球静止卫星地形的典型元素,并采用了包括多层绝缘和太阳能电池在内的典型卫星表面材料,以增强其光学代表性。这颗卫星也是由 Blackswan 根据 ESA 合同生产的,我们实验室的任何客户现在都可以使用它。”
抽象简介:再生肌发生在成熟的肌纤维中起着至关重要的作用,可抵消神经肌肉疾病引起的肌肉损伤或功能障碍。专门的肌源性干细胞的激活(称为卫星细胞)本质上与增殖和分化有关,然后是肌细胞融合和多核肌纤维的形成。涵盖的区域:本报告概述了卫星细胞在神经肌肉系统中的作用以及蛋白质组学分析对生物标志物发现的潜在影响,以及鉴定新的治疗靶标在肌肉疾病中的影响。本文回顾了单细胞蛋白质组学对卫星细胞,成肌细胞和心肌细胞进行系统分析的方式,可以帮助更好地理解肌纤维再生过程。专家意见:为了更好地理解神经肌肉疾病中的卫星细胞功能障碍,基于质谱的蛋白质组学是一种出色的大规模分析工具,用于对病理生理过程进行系统分析。可以通过机械/酶促解离方案通常执行优化的肌肉衍生细胞的隔离,然后在专用的流式细胞仪中进行荧光激活的细胞分类。使用标记的自由定量方法或使用串联质量标签的方法是研究干细胞在神经肌肉疾病中的病理生理作用的理想生物分析方法。
Manuel Rodrigues (1) 、J. Bergé (1) 、D. Boulanger (1) 、B. Christophe (1) 、M. Dalin (1) 、V. Lebat (1) 、F. Liorzou (1) (1) ONERA,巴黎萨克雷大学,F-92322 Chatillon,法国,+33146734728,manuel.rodrigues@onera.fr 摘要 ONERA 物理系 50 年来一直致力于开发用于空间科学的高性能加速度计。 2017 年,由法国蔚蓝海岸天文台和 Onera 提出的 CNES MICROSCOPE 任务在基础物理学方面取得了出色的成果。 借助加速度计,它在等效原理(广义相对论的基石)测试中取得了有史以来最好的结果。 2013 年,ESA GOCE 任务搭载 6 个静电加速度计,绘制出了最佳的地球重力图。最近,两颗 JPL GFO 卫星发射升空,在 GRACE 进行 15 年的测量后,为大地测量学界提供了成果。对于未来的任务,我们将利用实验室的遗产,开发一种更紧凑的加速度计,用于微型卫星或纳米卫星上的科学研究。在概述过去几十年取得的成就之后,演讲将重点介绍未来在小型卫星或纳米卫星上大地测量和基础物理学方面的发展。