我们在伽利略计划中的第一份合同是在 2002 年签订的,当时我们与 Surrey Satellite 合作,展示了他们的小型卫星如何提供可行的导航服务。这促使 Surrey 被选中供应欧洲第一颗导航卫星 Giove-A,以及 26 颗伽利略卫星中的 22 颗的有效载荷。工作迅速发展,2004 年我们被任命为地面部分设计的总承包商,涵盖控制 30 颗卫星的地面基础设施。我们目前正在实施地面基础设施的主要部分,包括管理太空卫星的实时系统和主要安全设施。我们的安全职责价值超过 1 亿欧元,包括交付管理加密密钥的系统和支持运营伽利略的政治机构。我们还为欧盟委员会(伽利略的所有者)和主要工业承包商提供安全咨询。
被动式离轨装置的特点:• 简单• 在主机 S/C 上的占用空间小• 可以是自主系统(看门狗)• 重量轻,由于节省燃料而减轻 S/C 的总质量• 可扩展• 只在存在大气层/磁层/电离层(LEO)且卫星不太大(<1000 kg)的地方工作• 成本低挑战 早期部署的风险 缺乏机动性 微陨石撞击 低遗产 部署后脱轨 原子氧可能导致设备严重侵蚀 部署的使用寿命 + 可靠性
创建于2015年,Unseenlabs是法国起源的创新公司,在RF卫星在海上的船舶地理位置。其专有的板载卫星技术允许将任何船上的任何船从单个纳米卫星上划分到最近的公里。unseenlabs提供了广泛的海上玩家,并在船舶位置上提供准确和最新的数据,从而更好地监视海上活动。是满足海上公司的数据需求,还是帮助机构和组织与非法和反环境行为作斗争,例如非法捕鱼或非法倾销,Unseenlabs服务是海洋服务的工具。在2018年,Unseenlabs欢迎Definvest(Bpifrance and DGA)Breizh UP,Breizh UP,Feder和Héméria在其首都以750万欧元的价格支持的布列塔尼地区基金。unseenlabs.space
摘要。本研究介绍了一种多功能结构,用于空间工程应用,这是 ESA 资助的 TOPDESS 项目的一部分。该项目的主要目的是设计一种能够通过被动驱动展开的热控制装置。设计了一种组合装置,由脉动热管 (PHP) 可折叠热交换器和形状记忆合金 (SMA) 丝组成。SMA 丝的展开被认为是通过与热源的热接触和沿丝的传导来控制的。由于热源集中且丝受到对流的影响,因此沿丝会产生温度梯度。本文提出了一种能够预测 SMA 丝在空间温度梯度下的行为的一维模式。结果表明,只有当丝受到均匀的温度分布时,系统才能进行旋转角度大于 80 ◦ 的折叠和展开循环;在温度梯度的情况下,可实现的旋转角度约为 20 ◦ 。分析指出了该驱动系统的可行性,强调了关键的技术方面,为整个系统的未来发展奠定了基础。
摘要 2020 年 2 月,新西兰收集了大量近距离操作的地球静止卫星观测数据。这些测量是“幻影回声”实验的一部分,该实验是澳大利亚、加拿大、新西兰、英国和美国之间的合作活动。作为一个合适的案例研究,选择了任务扩展飞行器 1 (MEV-1) 和 Intelsat 901 之间的对接。在近距离操作的最后部分,两颗卫星位于太平洋上空,因此从新西兰可以看到。这些观测是在位于奥克兰北部旺阿帕劳阿半岛的国防技术局 (DTA) 空间领域意识 (SDA) 天文台进行的。所有图像均使用配备 FLI ML11002 CCD 相机的 11 英寸 (279 毫米) Celestron Edge HD 望远镜拍摄的。DTA 天文台最近已完全自动化,可以整夜连续收集数据。每个晴朗的夜晚,为了提高光度测定和天体测量的时间分辨率,我们经常会收集多达 1500 张图像,采样率约为每分钟 3 帧(每小时 180 帧)。基于 5 秒的曝光时间,卫星探测的视星等极限约为 15。实际上,只有当物体的星等约为 14 或更亮时,结果才是可以接受的。数据缩减是在 StarView 中执行的,这是 DTA 为 SDA 图像分析开发的专用软件工具。专门开发的数据分析算法用于恒星(恒星)图像和卫星(非恒星)图像的天体测量校准。基于视野中识别的大约 100-400 颗恒星,天体测量解决方案的典型 RMS 误差为 0.2 角秒。校准时使用了欧洲航天局的 GAIA 目录 (DR2),星等限制在 16 级以下。两颗卫星之间的相对天体测量随机测量误差通常小于 0.1 角秒,相当于太空中的 20 米以内。基于 GAIA G 波段的典型光度校准产生的 RMS 误差约为 0.1 – 0.2 个量级。同时,在良好的大气条件下,孔径光度测定的随机误差仅在 0.02 到 0.04 之间。利用 MEV-1 和 Intelsat 901 在近距操作期间获得的高质量测量结果,可以将观测到的天体测量和光度数据中的某些特征与任务期间执行的实际操作和其他关键事件关联起来。事实证明,现成的小孔径光学设备可成功用于监测地球静止轨道 (GEO) 上的近距操作并收集重要信息以供空间领域感知。
在过去的 6 年中,巴西共开发和发射了 6 颗小型卫星:NCBR-1(2014 年),研究气候和现象,例如南大西洋异常 (SAA);AESP-14(2015 年),天线部署问题导致通信失败;SERPENS-1(2015 年),运行数据收集并与地面站通信;Tancredo-1(2017 年),教育卫星;ITASAT(2018 年),实验业余无线电通信等目的;最后一颗卫星 Floripasat(2019 年),是 SERPENS 1 型号的延续。随着产量的增加,计划在 2020 年至 2022 年间再发射 9 颗立方体卫星:Alfa Crux、14BisSat、NCBR-2、ConnaSat A、ConnaSat B、Garatea、Sport 和 VCUB 星座。随着国家对立方体卫星平台及其变体的兴趣日益浓厚,预计将从教育和实验活动过渡到需求驱动的技术生产。2018 年,巴西航天局和巴西工业发展署联合发起了一项关于成熟技术商业开发的讨论。在圣若泽杜斯坎普斯举行的活动上,巴西的航空航天需求被分为地球观测、数据收集、气象学、通信、GP 和科学任务。本研究探讨了巴西以前的立方体卫星任务以及近期计划的九个任务的目标和状态。目标是以务实的眼光研究学术和工业发展之间的差距,强调下一步需要采取哪些措施来使这两个部门接近并刺激该国的小型卫星生产和应用。此外,这些分析应作为计划参与未来任务和应用的企业的蓝图。
高性能科学卫星的可持续发展之路 高性能科学卫星目前是政府资助机构的专属领域。Twinkle 太空任务背后的团队正在开发一种新型小型可持续科学卫星,利用商业太空领域的最新创新。 太空机构执行的科学任务对科学和社会产生了变革性影响。旅行者号等任务揭示了有关我们太阳系及其他地区的宝贵信息,而 Envisat 等地球观测卫星则提供了证实全球变暖的长期温度趋势。这些开创性的任务带来了无数发现,并为太空仪器设定了高技术标准。 哈勃和斯皮策太空望远镜以及 XMM-Newton 等一般空间科学观测站通常涵盖多种科学用例。这些卫星内的高性能科学仪器通常需要为每个任务专门开发的复杂而尖端的技术。由于开发时间长且实施成本高,与商业地球观测等其他领域相比,运行中的科学卫星数量相对较少。因此,到目前为止,科学界不得不在大量超额认购的太空望远镜上争夺时间。地面观测和新的小型机器人望远镜网络通常更容易获得,设施由政府间和私人组织建造和管理。许多这样的设施已经开发出创新的数据访问模型,包括出售望远镜“夜晚”和基于会员制的调查合作模型。随着时间的推移,社区已经习惯了这种新方法,购买“望远镜时间”的资金补助也随之增加。不幸的是,地面观测有其自身的挑战和局限性,由于地球大气的吸收和散射,大部分电磁波谱被阻挡。此外,天空和望远镜的热背景变化很大,使得在红外波长下无法进行高精度的地面观测。太空仪器可以克服这些问题,但众所周知,将卫星送入太空既困难又昂贵。全球许多大学和研究机构都通过建造内部科学“立方体卫星”(质量为几公斤 1 的卫星)来挑战当前模式。然而,与立方体卫星格式兼容的仪器通常太小,无法解决广泛的科学问题。到目前为止,这些问题只能通过政府机构建造的旗舰任务来解决。
' - ‹…ƒ–钓务–ƒ–€'•ȍ'ƒ” –šƒ –š‡„' - †‡–š‡‡‡‡‡‡ „▪… †'™ –' ▪‡…' † ¤”'— †•–ƒ–‚•' ‡™Š‡”‡ ‡Ž•‡Ǥ Ž'– 'ˆ …' — ▪ Ž ‡ –‡Ž‡'Š' ‡ …▪–▪▪ǡ ª –‡” ‡– †▪–▪▪ǡ ▪ † ”▪† ▪ ▪ „”f†… †•–• ł f”‡ •‡ – „› ”ƒ†‹' ™ƒ~‡•ǡ ™Š´…Š •Š''– '—– ‹ •–”ƒ‹‰Š– Ž´ ‡•Ǥ › •‡ †ª ▪ ▪ † ”‡…‡¤´ ª ”ƒ†¤' ™ƒ~‡• ˆ”' ƒ”–Š ´ –' •'ƒ…‡ǡ –Ї•‡ …' — …… - < ' • •f–‡ŽŽ´–‡• •'Ž~‡ –Ї '"'„އ 'ˆ ”‡Žс›‹ ¸ –Ї•‡ •–”ƒªŠ–ǦŽ´ ‡ ”ƒ†‹' ™ƒ~‡• ▪ ”''— † '—” …—”~‡† ƒ”–ŠǤ